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Abstract

The paper examines the issue of stability of Poiseuille type flows in regime of compressible Navier–Stokes equations in a three
dimensional finite pipe-like domain. We prove the existence of stationary solutions with inhomogeneous Navier slip boundary
conditions admitting nontrivial inflow condition in the vicinity of constructed generic flows. Our techniques are based on an
application of a modification of the Lagrangian coordinates. Thanks to such an approach we are able to overcome difficulties
coming from hyperbolicity of the continuity equation, constructing a maximal regularity estimate for a linearized system and
applying the Banach fixed point theorem.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudie la stabilité des mouvements de fluides de type Poiseuille dans le cadre des équations de Navier–Stokes
compressibles dans un domaine cylindrique borné en trois dimensions. On montre l’existence de solutions stationnaires avec
conditions au bord de type Navier non homogènes admettant la traversée du bord par le fluide, au voisinage d’une classe de
solutions laminaires du type Poiseuille. Notre technique est fondée sur l’application de coordonnées de Lagrange modifiées. La
methode permet de prendre en compte les difficultés résultant de l’hyperbolicité de l’équation de continuité en dérivant une estimée
de régularité maximale pour un système linéarisé et en appliquant un théorème de point fixe de Banach.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The mathematical description of compressible flows is important from the point of view of applications, domains
such as aerodynamics and geophysics are the most natural to be mentioned here. On the other hand, complexity of
the equations describing the flow delivers very interesting mathematical challenges. In spite of active research in the
field, we are still far from the complete mathematical understanding of compressible flows. The only general existence
results are available for weak solutions with homogeneous boundary conditions [6,11]. As far as regular solutions are
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concerned, we have so far only partial results assuming either some smallness of the data, or its special structure.
The problems have been investigated mainly with homogeneous boundary conditions [4,16]. For the overview of the
state of art in the theory one can consult the monograph [17].

From the point of view of the aforementioned applications it seems very important to investigate the problems with
large velocity vectors, which lead in a natural way to inhomogeneous boundary conditions. Due to the hyperbolic
character of the continuity equation the density must be then prescribed on the inflow part of the boundary. Existence
issues for such inflow problems are investigated in [8,9,18–21,25]. The mentioned group of problems can be regarded
as questions of stability of particular constant flows.

In the present article we would like to examine the issue of stability of Poiseuille type flow in pipe-like domain
in compressible regime. The Poiseuille flow is a special symmetric solution to the incompressible Navier–Stokes
equations in cylindrical domains. Here it is viewed as a solution to the compressible Navier–Stokes system with
constant density and constant external force, parallel to axis of the cylinder, given by the pressure (gravitation-like
term). Hence the pressure, unknown in the incompressible model, is recognized as a given force. Such change of
‘observer’ looks acceptable from the mechanical point of view. Thanks to that interpretation we obtain a natural
physically reasonable flow in compressible regime. The mathematical objective of this article is to establish stability
of such flow under some structural assumptions limiting the magnitude of admissible perturbations.

The system. Let us define the system. We consider steady flow of a viscous, barotropic fluid in a bounded, cylin-
drical domain in R

3, described by the Navier–Stokes system supplied with inhomogeneous Navier slip boundary
conditions. The complete system reads

ρv · ∇v − μ�v − (μ + ν)∇ divv + ∇π(ρ) = ρF inΩ,

div(ρv) = 0 in Ω,

n · T(v,π) · τk + f v · τk = bk, k = 1,2 on Γ,

n · v = d on Γ,

ρ = ρin on Γin, (1.1)

where Ω = [0,L] × Ω0 with Ω0 ⊂ R
2 of class C2, Γ denotes the boundary of Ω (see Fig. 1), v is the velocity field

of the fluid, ρ is its density, μ and ν are viscosity constants satisfying μ > 0 and (ν + 2μ) > 0, f � 0 is the friction
coefficient which may be different on different components of the boundary Γ , π = π(ρ) is the pressure given as a
function, at least C1, of the density and F is an external force. T denotes the Cauchy stress tensor of the form

T(v,π) = 2μD(v) + ν divvId − πId, where D(v) = 1

2

(∇v + ∇vT
)

is the symmetric gradient. Next, n and τk are outer normal and tangent vectors to ∂Ω . Boundary data ρin, b, d will be
discussed later. The boundary Γ is naturally split into three parts:

Γ0 = {
x ∈ ∂Ω: v(x) · n(x) = 0

}
,

Γin = {
x ∈ ∂Ω: v(x) · n(x) < 0

}
,

Γout = {
x ∈ ∂Ω: v(x) · n(x) > 0

}
. (1.2)

Thanks to the chosen geometry of the domain, the above decomposition is easily illustrated by Fig. 1.
We shall say few words about the physical interpretation of the system (1.1), in particular about the choice of

boundary conditions (1.1)3,4. We would like to model a flow through a pipe. We assume that the fluid obeys Navier
slip conditions on the walls of the pipe (Γ0 component of the boundary), hence natural conditions on Γ0 are d ≡ 0
and bk ≡ 0. However, the mathematical requirements impose a need to prescribe the boundary conditions on Γin

and Γout . From the physical viewpoint these parts are artificial, this is the area where the parameters of the velocity
and density are measured. This gives us a freedom of choice of the type of boundary conditions on the inflow and
outflow part, which can be fit to the mathematical approach, hence we choose inhomogeneous slip condition. Note that
as the friction coefficient goes to infinity, then the relations (1.1)3,4, at least formally, become the standard Dirichlet
conditions describing the whole velocity vector at the boundary. Since the velocity does not vanish on the boundary,
the hyperbolicity of the continuity equation imposes a need to prescribe the density on the inflow part, which leads to
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