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We study the averaging behavior of nonlinear uniformly elliptic partial differential 
equations with random Dirichlet or Neumann boundary data oscillating on a small 
scale. Under conditions on the operator, the data and the random media leading to 
concentration of measure, we prove an almost sure and local uniform homogenization 
result with a rate of convergence in probability.
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r é s u m é

On étudie le comportement homogénéisant d’équations aux dérivées partielles 
elliptiques nonlinéaires, avec conditions au bord de Dirichlet ou de Neumann 
aléatoires, oscillantes à petite échelle. Sous certaines contraintes sur l’opérateur, 
telles que les données et les milieux aléatoires conduisent à une concentration de 
la mesure, on démontre un résultat presque sûr d’homogénéisation locale uniforme, 
avec un taux de convergence en probabilité.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this article we investigate the averaging behavior of the solutions to nonlinear uniformly elliptic partial 
differential equations with random Dirichlet or Neumann boundary data oscillating on a small scale. Under 
conditions on the operator, the data and the random media leading to concentration of measure, we prove 
an almost sure and local uniform homogenization result with a rate of convergence in probability.
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In particular, we consider the Dirichlet and Neumann boundary value problems⎧⎪⎨⎪⎩
F
(
D2uε

)
= 0 in U,

uε = g

(
·, ·
ε
, ω

)
on ∂U,

(1.1)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F
(
D2uε

)
= 0 in U \K,

∂νu
ε = g

(
·, ·
ε
, ω

)
on ∂U,

uε = f on ∂K,

(1.2)

where U is a smooth bounded domain in Rd with d ≥ 2, K is a compact subset of U , ν is the inward normal, 
F is positively homogeneous of degree one and uniformly elliptic, f is continuous on K and g = g(x, y, ω)
is bounded and Lipschitz continuous in x, y uniformly in ω belonging to a probability space (Ω, F , P), and, 
for each fixed x ∈ U , stationary with respect to the translation action of Rd on Ω and strongly mixing with 
respect to (y, ω) (the precise assumptions are given in Section 2.2).

We show that there exist a deterministic continuous functions gD, gN : ∂U → R such that, as ε → 0, 
the solutions uε = uε(·, ω) of (1.1) and (1.2) converge almost surely and locally uniformly in U (with a rate 
in probability) to the unique solution u of respectively{

F
(
D2u

)
= 0 in U,

u = gD on ∂U,
(1.3)

and ⎧⎪⎨⎪⎩
F
(
D2u

)
= 0 in U \K,

∂νu = gN on ∂U,

u = f on ∂K.

(1.4)

The homogenized boundary condition g (here and in the rest of the paper we omit the subscript and always 
denote the homogenized boundary condition by g) depends on F , ν, d and the random field g. The rate of 
convergence depends on the regularity of U , the continuity and mixing properties of g, the dimension d, the 
ellipticity ratio of F and, in the case of the Neumann problem, the bounds of f .

We discuss next heuristically what happens as ε → 0 in the Dirichlet problem (1.1). It follows from the 
up to the boundary continuity of the solutions to (1.1) that, close to the boundary, uε typically has unit size 
oscillations over distances of order ε. Therefore any convergence to a deterministic limit must be occurring 
outside of some shrinking boundary layer, where the solution remains random and highly oscillatory even 
as ε → 0. In order to analyze the behavior of the uε near a point x0 ∈ ∂U with inner normal ν we “blow 
up” uε to scale ε, that is we consider

vε(y, ω) = uε(x0 + εy, ω).

If homogenization holds, then vε(Rν, ω) should converge to g(x0) for R > 0 sufficiently large to escape 
the boundary layer. Noting that the random function vε(·, ω) is uniformly continuous, as ε → 0, we can 
approximate vε(·, ω) by the solution of the half-space problem, obtained after “blowing up” in the tangent 
half-space at x0, {

F
(
D2v

)
= 0 in

{
y ∈ R

d : y · ν > 0
}
,

v(·, ω) = ψ(·, ω) on
{
y ∈ R

d : y · ν = 0
}
.

(1.5)
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