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Abstract

We show that a twist of a three-dimensional tube of uniform cross-section yields an improved decay rate for the heat semigroup
associated with the Dirichlet Laplacian in the tube. The proof employs Hardy inequalities for the Dirichlet Laplacian in twisted
tubes and the method of self-similar variables and weighted Sobolev spaces for the heat equation.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Nous montrons que la torsion d’un tube non-borné a section transversale constante dans I’espace euclidien tridimensionnel induit
une amélioration du taux de décroissance pour le semi-groupe associé a 1’equation de la chaleur avec des conditions aux limites de
Dirichlet dans le tube. La démonstration utilise des inégalités de type Hardy pour le laplacien Dirichlet dans les tubes torsadés et
la méthode de variables de similarité et les espaces de Sobolev a poids gaussiens pour 1’équation de la chaleur.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

It has been shown recently in [7] that a local twist of a straight three-dimensional tube £2p := R x w of non-circular
cross-section @ C R? leads to an effective repulsive interaction in the Schrodinger equation of a quantum particle
constrained to the twisted tube $29. More precisely, there is a Hardy-type inequality for the particle Hamiltonian
modelled by the Dirichlet Laplacian —Ag" at its threshold energy E if, and only if, the tube is twisted (cf. Fig. 1).
That is, the inequality,

—AR —Ei1 >0 (1.1)

holds true, in the sense of quadratic forms in LZ(QQ), with a positive function o provided that the tube is twisted,
while o is necessarily zero for §29. Here E; coincides with the first eigenvalue of the Dirichlet Laplacian — A% in the
cross-section w.
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Fig. 1. Untwisted and twisted tubes of elliptical cross-section.

The inequality (1.1) has important consequences for conductance properties of quantum waveguides. It clearly
implies the absence of bound states (i.e., stationary solutions to the Schrodinger equation) below the energy E; even
if the particle is subjected to a small attractive interaction, which can be either of potential or geometric origin (cf. [7]
for more details). At the same time, a repulsive effect of twisting on eigenvalues embedded in the essential spectrum
has been demonstrated in [14]. Hence, roughly speaking, the twist prevents the particle to be trapped in the waveguide.
Additional spectral properties of twisted tubes have been studied in [9,18,2].

It is natural to ask whether the repulsive effect of twisting demonstrated in [7] in the quantum context has its
counterpart in other areas of physics, too. The present paper gives an affirmative answer to this question for systems
modeled by the diffusion equation in the tube £2g:

u; — Au=0, (1.2)

subject to Dirichlet boundary conditions on d£2y. Indeed, we show that the twist is responsible for a faster convergence
of the solutions of (1.2) to the (zero) stable equilibrium. The second objective of the paper is to give a new (simpler
and more direct) proof of the Hardy inequality (1.1) under weaker conditions than those in [7].

1.1. The main result

Before stating the main result about the large time behavior of the solutions to (1.2), let us make some comments
on the subtleties arising with the study of the heat equation in £2g.

The specific deformation 29 of §2¢ via twisting we consider can be visualized as follows: instead of simply
translating w along R we also allow the (non-circular) cross-section w to rotate with respect to a (non-constant)
angle xj — 6(x1). See Fig. 1 (the precise definition is postponed until Section 2, cf. Definition 2.1). We assume that
the deformation is local, i.e.,

6 has compact support in R. (1.3)
Then the straight and twisted tubes have the same spectrum (cf. [17, Sec. 4]):
0 (=A) = Oess (~ATY) = [Ey, 00). (1.4)

The fine difference between twisted and untwisted tubes in the spectral setting is reflected in the existence of (1.1) for
the former.

In view of the spectral mapping theorem, the indifference (1.4) transfers to the following identity for the heat
semigroup:

Vi >0, e Bt (1.5)

29
At -
|e» ||L2(99)»L2(99) =
irrespectively whether the tube 2y is twisted or not. That is, we clearly have the exponential decay,
lu®] 2,y <™ ol 2, (1.6)

for each time # > 0 and any initial datum u¢ of (1.2). To obtain some finer differences as regards the time-decay of
solutions, it is therefore natural to consider rather the “shifted” semigroup,

S(t) 1= eAB+ED, (1.7)

as an operator from a subspace of L2(829) to L2(£2p).
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