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Essentially non-oscillatory (ENO) and weighted ENO (WENO) methods are efficient high 
order numerical methods for solving hyperbolic conservation laws designed to reduce the 
Gibbs oscillations. The original ENO and WENO methods are based on the polynomial 
interpolation and the overall convergence rate is uniquely determined by the total 
number of interpolation points involved for the approximation. In this paper, we propose 
non-polynomial ENO and WENO finite volume methods in order to enhance the local 
accuracy and convergence. The infinitely smooth radial basis functions (RBFs) are adopted 
as a non-polynomial interpolation basis. Particularly we use the multi-quadratic and 
Gaussian RBFs. The non-polynomial interpolation such as the RBF interpolation offers 
the flexibility to control the local error by optimizing the free parameter. Then we 
show that the non-polynomial interpolation can be represented as a perturbation of 
the polynomial interpolation. To guarantee the essentially non-oscillatory property, the 
monotone polynomial interpolation method is introduced as a switching method to the 
polynomial reconstruction adaptively near the non-smooth area. The numerical results 
show that the developed non-polynomial ENO and WENO methods with the monotone 
polynomial interpolation method enhance the local accuracy and give sharper solution 
profile than the ENO/WENO methods based on the polynomial interpolation.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Consider the hyperbolic conservation laws

vt +� · F (v) = 0, (1)

for the state vector v ≡ v(t, x) : I ×� → R
m , where I := (0, T ] is a time interval with T > 0 and � ⊂ R

d is an open bounded 
computational domain. F (v) := [ f1(v), · · · , fm(v)] is the flux function. An initial condition v0(x) = v(x, 0) is given along 
with appropriate boundary conditions. Despite the smoothness of v0(x), the solution to (1) may develop a discontinuity 
within a finite time. High order numerical approximations of the developed discontinuity suffer from the Gibbs phenomenon 
yielding spurious oscillations near the discontinuity. Since the publications by Harten et al. [13] and by Jiang and Shu 
[15], the essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) methods have been one of the 
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Table 1
Commonly used radial basis functions φ(r), r � 0 with ε known as the shape parameter.

Infinitely smooth RBFs Piecewise smooth RBFs

Gaussian (GA) exp(−(εr)2) Polyharmonic spline rk , k = 1,3,5, . . .

Multiquadratic (MQ)
√

1 + (εr)2 rk ln(r), k = 2,4,6, . . .

Inverse quadratic (IQ) 1
1+(εr)2

most powerful numerical methods that can successfully deal with the Gibbs oscillations. Numerous modifications of the 
original ENO/WENO methods have been also developed, while resolving small scale structures accurately and efficiently. 
These include recent works such as WENO-M [14], WENO-Z [3], power-ENO [20], WENO-P [11], modification of the ENO 
basis [2] and WENO-η [8] methods, to name a few. There is no best ENO/WENO variation because all variations have their 
own strengths and weaknesses. However, most variations have a common ground: the polynomial reconstruction. In recent 
reviews of the WENO method by Shu [23], the WENO reconstruction based on non-polynomial functions such as the Fourier 
functions is briefly mentioned [5].

In this paper, we present a simple new type of the ENO/WENO methods based on non-polynomial interpolations. As an 
example of non-polynomial bases, radial basis functions (RBFs) are used. In [1], the ADER method was developed based on 
the polyharmonic spline, which belongs to the family of piecewise smooth RBFs. The motivation of the method presented 
in [1] was to adopt the WENO method efficiently for the arbitrary geometry and unstructured mesh by using the meshless 
feature of RBFs. So there was no undetermined shape parameter — or the shape parameter is fixed as ε = 1. The order of 
convergence is overall fixed once the size of each stencil k is fixed. Our main motivation in this paper, however, is to enhance 
the original ENO/WENO accuracy by modifying the interpolation coefficients. For this reason, we need free parameters to 
optimize, which makes the presented method in this paper different from the one in [1].

RBFs are divided into two categories depending on whether there are undetermined shape parameters: piecewise smooth 
RBFs and infinitely smooth RBFs (see Table 1). In this paper, we first use the infinitely smooth RBFs because they are defined 
with a free parameter ε , so-called the shape parameter. Since the parameter is free yet to be determined locally, it yields the 
flexibility to improve the original ENO/WENO accuracy. In fact, different RBFs give equivalent interpolations. This means we 
will end up with the same type of reconstruction irrespective of the bases used. This is also true for the piecewise smooth 
RBF basis used in [1], if we regard them as a special case of the infinitely smooth RBF basis with the shape parameter 
fixed as ε = 1. We can also show that the derived RBF interpolation formulas are equivalent to the perturbed polynomial 
interpolation. Thus one can use other non-polynomial bases rather than RBFs as long as the new basis is defined with one or 
more free parameters for improving the local accuracy and convergence. For the RBF interpolation, it becomes a polynomial 
interpolation if the shape parameter vanishes. This makes it easy to modify the existing ENO/WENO code to the proposed 
ENO/WENO methods. We restrict our discussion to the one-parameter perturbation although it may be possible to utilize 
multiple free parameters.

Unlike the polynomial interpolation, the perturbed polynomial interpolation such as the RBF interpolation is not neces-
sarily consistent, i.e. reconstruction coefficients may not sum to unity. Such an inconsistency helps the proposed method to 
enhance local accuracy in the smooth area. However, if the solution contains discontinuities, the inconsistent reconstruction 
causes the Gibbs oscillations. To prevent the Gibbs oscillations, the monotone polynomial interpolation method by mea-
suring the local extrema is introduced. The non-polynomial interpolation is switched into the polynomial interpolation in 
the non-smooth region. This can be done easily by adopting the vanishing shape parameter to reduce the method into the 
polynomial method [16].

The paper is composed of the following sections. In Section 2, we briefly explain the finite volume ENO/WENO methods. 
In Section 3, we use the case of k = 2 to illustrate the RBF-ENO interpolation based on the multi-quadric (MQ), Gaussian 
RBFs and the perturbed polynomial. In this section, the tables of the reconstruction coefficients for k = 2 and k = 3 are 
provided. In Section 4, we explain the monotone polynomial interpolation method in detail. In Section 5, we briefly explain 
the time-integration and flux schemes that are used for the numerical experiment. Then the 1D numerical examples are 
presented for both scalar and system problems. In Section 6, we explain the 2D ENO/WENO finite volume interpolation 
method based on the non-polynomial bases. In Section 7 the 2D numerical examples are presented. In Section 8, we provide 
a brief conclusion and our future research.

2. Finite volume ENO/WENO method

Suppose that we are given a grid with N cells such that

a = x 1
2

< x 3
2

< · · · < xN− 1
2
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= b.

For the i-th cell Ii = [xi− 1
2
, xi+ 1

2
], define the cell center xi and cell size �xi as
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