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In this paper, a spectral iterative method is employed to obtain approximate solutions 
of singular nonlinear Volterra integral equations, called Abel type of Volterra integral 
equations. The Abel’s type nonlinear Volterra integral equations are reduced to nonlinear 
fractional differential equations. This approach is based on a combination of two different 
methods, i.e. the iterative method proposed in [7] and the spectral method. The method 
reduces the fractional differential equations to systems of linear algebraic equations and 
then the resulting systems are solved by a numerical method. Finally, we prove that the 
spectral iterative method (SIM) is convergent. Numerical results comparing this iterative 
approach with alternative approaches offered in [4,8,24] are presented. Error estimation 
also corroborate numerically.

© 2016 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Many problems of mathematical physics can be formulated in the form of integral equations. These equations can also 
be reformulated in other mathematical problems such as partial differential equations and ordinary differential equations. 
Recently, there has been a growing interest in the Volterra integral equations in many fields of physics and engineering [3], 
for example, potential theory and Dirichlet problems, electrostatics, the particle transport problems of astrophysics and 
reactor theory, contact problems, diffusion problems, and heat transfer problems has arisen.

Many researchers have applied some valid numerical methods to solve integral equations using various polynomials [25]. 
Recently, Maleknejad et al. [20] and Tari and Shahmorad [29] applied computational method to solve two-dimensional 
linear Fredholm integral equations of the second kind. Shahsavaran [26] has used block pulse functions and Taylor Expan-
sion method. Bellour and Rawashdeh [5] and Wang [30] also used Taylor polynomials with computer algebra. Bhatti and 
Bracken [6] used Bernstein polynomials to solve second order linear and first order nonlinear differential equations. Shirin 
and Islam [28], also have applied polynomials for solving Fredholm integral equations of the second kind. An augmented 
Galerkin technique was described by Amaratunga [2] for the numerical solution of one-dimension partial differential equa-
tion. Hanna and Kucera [13] also studied collocation to solve Fredholm integral equations. In [16] a solution of integral 
equation via Laguerre polynomials is suggested. A numerical solution of the integral equations of the first kind is studied 
by Rashed [23].

One of the integral equations that arises from physical or mechanical models without passing through a differential 
equation is the one by Abel [1]. In many branches of science such as astronomy, quantum mechanics, optics such singular 
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Volterra integral equations arise. We have presented in [9,10] numerical methods for elastostatic problems, solving systems 
of singular integral equations. A detailed explanation of singular integral equation with Cauchy and Dirichlet problems is 
presented in [19]. The linear and nonlinear integral equations are solved in [31]. Li Huang et al. [15] have presented a stable 
approximate inversion of Abel integral equation by using the Taylor expansion. Zeilon [32] studied the generalized type of 
the Abel integral equation upon a finite segment.

The nonlinear Abel type Volterra integral equation was studied by Diogo and Lima and Rebelo [8], where they explain 
the extrapolation method to solve equation and then compare it with the collocation methods and graded meshes. The 
nonlinear Abel equation was solved by P. Kumar Gupt [12] using modified Adomian decomposition method. The fractional 
differential equations were solved by Kazem et al. [17] using operational matrices of fractional-order Legendre functions.

In this paper, we mix together collocation spectral method and an iterative procedure to solve nonlinear Abel type 
Volterra integral equations. Then we apply this method to some problems and show its good accuracy. In this method, the 
nonlinear Abel type Volterra integral equation is reduced to nonlinear fractional differential equation and the solution is 
done through a combination of Legendre spectral method of fractional-order with the iterative method proposed in [7]. This 
paper is organized as follows.

We describe preliminaries in Sec. 2. In Sec. 3 we describe how an Abel’s type Volterra integral equation reduces to a 
fractional differential equation. In Sec. 4.1 we describe the iterative method and in Sec. 4.2 we give a description of shifted 
fractional-order Legendre functions. In Sec. 4.3 we use collocation method to obtain the approximate solution for differential 
equation with initial conditions as a linear combination of fractional-order Legendre functions. In Sec. 4.4, we describe the 
spectral-iterative method (SIM) which is a combination of two different methods, one iterative and the other spectral. We 
prove the convergence of SIM in Sec. 4.5 and introduce the numerical results in Sec. 5 and investigate the estimation of 
errors in Sec. 6.

2. Preliminaries and notations

In order to proceed, we need the following definitions of fractional derivatives and integrals. First, we introduce the 
Caputo definition of fractional integral operator Jαa .

Definition 2.1. Let α ∈ R+ . The operator Jαa , defined on the space L1 [a,b] by

Jαa f (x) = 1

�(α)

x∫
a

(x − t)α−1 f (t)dt, α > 0, (1)

J 0
a f (x) = f (x),

for a ≤ x ≤ b, is called the Caputo fractional integral operator of order α.

Properties of the operator Jαa can be found in [22]. For f ∈ L1 [a,b], α, β ≥ 0 and γ > −1, we mention only the following:

(1) Jαa f (x) exists for almost every x ∈ [a,b],

(2) Jαa Jβ
a f (x) = Jα+β

a f (x),

(3) Jαa Jβ
a f (x) = Jβ

a Jαa f (x),

(4) Jαa (x − a)γ = �(γ +1)
�(α+γ +1)

(x − a)α+γ .

Definition 2.2. The fractional derivative of f in the Caputo sense is defined as

Dα
a f (x) = Jm−α

a Dm f (x) = 1

�(m − α)

x∫
a

(x − t)m−α−1 dm

dtm
f (t)dt, (2)

where m ∈ N , m − 1 < α ≤ m, and f ∈ L1 [a,b].

Properties of the operator Dα
a can be found in [18,21,22]. For m − 1 < α ≤ m, x > a and γ > −1 we mention only the 

following:

(1) Dα
a (x − a)γ = �(γ +1)

�(γ −α+1)
(x − a)γ −α ,

(2) Dα
a Jαa f (x) = f (x).
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