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We use a connection between interpolatory quadrature formulas and Fourier series to find 
a wide class of convergent schemes of interpolatory quadrature rules. In the process we 
use techniques coming from Riemann–Hilbert problems for varying measures and convex 
analysis.
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1. Introduction

Let x j,n , j = 1, . . . , n, be n points such that −1 < x1,n < x2,n < · · · < xn,n < 1. We consider the quadrature rule for contin-
uous functions f on the interval [−1, 1] ( f ∈ C ):

In[ f ] =
n∑

j=1

λ j,n f (x j,n),

where the coefficients

λ j,n =
∫

Pn(x)dx

P ′
n(x j,n)(x − x j,n)

, j = 1, . . . ,n, with Pn(x) =
n∏

j=1

(
x − x j,n

)
. (1)

In order to simplify the notation, throughout the paper we will convene that

∫
g(x)dx =

1∫
−1

g(x)dx.
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The points x j,n , j = 1, . . . , n, are called nodes of the rule, and the vector xn = (x1,n, · · · , xn,n) is then the corresponding 
system of nodes. This quadrature rule satisfies the following equality for every polynomial P with degree smaller than n:

In[P ] =
n∑

j=1

λ j,n P (x j,n) =
∫

P (x)dx. (2)

To see this, from Lagrange’s interpolatory formula we have that

P (x) =
n∑

j=1

Pn(x)P (x j,n)

P ′
n(x j,n)(x − x j,n)

,

and integrating, we obtain∫
P (x)dx =

n∑
j=1

P (x j,n)

∫
Pn(x)dx

P ′
n(x j,n)(x − x j,n)

=
n∑

j=1

λ j,n P (x j,n),

which is (2). Those quadrature formulas are often called interpolatory quadrature rules.
Let us fix a triangular scheme of nodes X = {xn = (x1,n, . . . , xn,n)}n∈N . We may wonder if the following equality holds for 

every continuous function f ∈ C :

lim
n→∞ In[ f ] =

∫
f (x)dx as n → ∞. (3)

In general the answer is negative. It is easy to construct a counterexample. Suppose we have a scheme with no node 
in a Borel set I ⊂ [−1, 1] and I ∩ [−1, 1] �= ∅, with I of positive Lebesgue measure. We can always find a continuous 
function f which satisfies f (x) = 0 if x /∈ I and f (x) > 0 when x ∈ I . Hence for every n ∈ N, f (xk,n) = 0, k = 1, . . . , n, and 

n∑
k=1

λ j,n f (xk,n) = 0. So

0 = lim
n→∞

n∑
k=1

λ j,n f (xk,n) �=
∫

f (x)dx =
∫
I

f (x)dx > 0.

We say that the scheme of nodes X is convergent when (3) takes place for every f ∈ C . The above example of non-
convergent scheme points out that the nodes should be well distributed on [−1, 1] in a certain sense. So now the question 
is: what does well distributed mean in this context?

A sequence of Borel measures {σn}n∈N supported on [−1, 1] (supp(σn) ⊂ [−1, 1]) is said to be star weak convergent to 
another measure σ , and we denote σn

�→σ as n → ∞, if for all f ∈ C the following equality is satisfied

lim
n→∞

∫
f (x)dσn(x) =

∫
f (x)dσ(x).

Let us introduce the sequence of signed measures {μn}n∈N

μn =
n∑

k=1

λk,nδxk,n , n ∈N, (4)

where δx denotes Dirac’s delta measure supported on x. So condition (3) can be written as μn
�→dx as n → ∞.

In [6], T. Bloom, D.S. Lubinsky, and H. Stahl found a necessary convergent condition on the distribution of nodes. Consider 
the sequence of zero counting measures {ηn}n∈N corresponding to the scheme of nodes X = {xn = (x1,n, . . . , xn,n)}n∈N . This 
means that for each n ∈ N, ηn assigns mass 1/n to each x j,n; explicitly:

ηn = 1

n

n∑
k=1

δxk,n , n ∈N. (5)

The authors showed that if a scheme X converges then every weak convergent subsequence corresponding to the set of 
counting measures must satisfy that

ηn
�→ 1

2
(ν + β) = μ, where dν(x) = d x

π
√

1 − x2
, x ∈ (−1, 1), (6)

and β is a positive and probability measure on [−1, 1]. Also, for any such measure μ there exists a convergent interpolatory 
quadrature scheme with positive weights coefficients λ j,n .
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