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This paper is devoted to the numerical analysis of a first order fractional-step time-
scheme (via decomposition of the viscosity) and “inf-sup” stable finite-element spatial 
approximations applied to the Primitive Equations of the Ocean. The aim of the paper is 
twofold. First, we prove that the scheme is unconditionally stable and convergent towards 
weak solutions of the Primitive Equations. Second, optimal error estimates for velocity and 
pressure are provided of order O (k +hl) for l = 1 or l = 2 considering either first or second 
order finite-element approximations (k and h being the time step and the mesh size, 
respectively). In both cases, these error estimates are obtained under the same constraint 
k ≤ C h2.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Assuming some simplifications (basically hydrostatic pressure and “rigid lid” hypothesis), the 3D Navier–Stokes problem 
leads to the so-called “Primitive Equations” (or Hydrostatic Navier–Stokes problem). This problem is fundamental in the 
field of geophysical fluids [14,28,31], because it describes the large-scale motions in the ocean [29]. The rigid lid hypothesis 
(vertical displacements of the free surface of the ocean are vanished) is usually assumed in Oceanography, except in the 
case when fast surface waves are of interest [14].

For simplicity, we take constant density and viscosity, Cartesian coordinates (x in the eastern direction, y in the northern
direction and z perpendicular to the surface of the Earth) and we assume that the effects due to temperature and salinity 
can be decoupled from the flow dynamics. Then, the Primitive Equations model can be written as the initial–boundary 
problem [27,29,28]:
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(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + (U · ∇)u − ν�u + b(u) + ∇x p = f in � × (0, T ),

∂z p = −ρ g, ∇ · U = 0 in � × (0, T ),

u = u3n3 = 0 on �b × (0, T ),

u = 0 on �l × (0, T ),

ν ∂zu = gs, u3 = 0 on �s × (0, T ),

u|t=0 = u0 in �,

where � = {(x, z) ∈ R3 : x = (x, y) ∈ S, −D(x) < z < 0} is the 3D domain filled by the water, with S ⊂ R2 the surface 
domain (a regular bounded 2D domain) and D : S → R+ the bottom function (assuming D > 0 in S). Then, the different 
boundaries of � are denoted as �s = S × {0} the surface, �b = {(x, −D(x)) : x ∈ S} the bottom and �l = {(x, z) : x ∈ ∂ S,

−D(x) < z < 0} the lateral walls (with outwards normal vector (nx, n3)).
The unknowns of the problem (P) are U = (u, u3) : � × (0, T ) → R3 the 3D velocity field (with u = (u1, u2) the horizontal 

velocity and u3 the vertical one) and p : � × (0, T ) → R the pressure.
In (P), b(u) = f u⊥ represents the effect of the Coriolis Forces, with u⊥ = (−u2, u1)

t and f = 2|w| sin θ , where w is 
the angular velocity of the Earth and θ = θ(y) is the latitude, ρ ∈ R+ is the water density (that it is assumed a positive 
constant), g ∈ R+ is the gravity acceleration (another positive constant), f : � × (0, T ) → R2 is a field of external horizontal 
forces (depending for instance on the salinity and temperature) and gs : �s × (0, T ) → R2 represents the stress of the wind 
on the surface.

Finally, ∇ = (∇x, ∂z)
t denotes the three-dimensional gradient operator (with ∇x = (∂x, ∂y)

t its horizontal component) and 
� = ∂2/∂xx + ∂2/∂yy + ∂2/∂zz the three-dimensional Laplacian operator.

Problem (P) has been vertically scaled such that the horizontal and vertical dimensions in � are of the same order. In 
fact, � is the non-dimensional domain obtained after a vertical scaling and problem (P) can be deduced from an asymptotic 
limit of the anisotropic Navier–Stokes equations when the aspect ratio (vertical vs horizontal scale) goes to zero [1,2,5].

Remark 1. When variations in the surface are important in the problem, it is usual to consider the general Navier–Stokes
equations with hydrostatic pressure, introducing the free surface as a new unknown. In this case, one has to change 
the boundary condition of “rigid lid” (u3 = 0 on �s) for the equation of the free surface, arriving at the so-called three-
dimensional Shallow Water model. Some numerical approximations of this model can be seen in [9,8,34].

We will give two reformulations of problem (P ) leading to different spatial approximations.
By using the vertical momentum equation ∂z p = −ρ g , the total pressure p can be decomposed as

p(t,x, z) = ps(t,x) + phyd(z)

where phyd(z) = −ρgz is the hydrostatic pressure, and ps : S × (0, T ) → R is a new unknown (defined only on the sur-
face S), that it will be called surface pressure.

Notice that incompressibility equation ∇ ·U = 0 in � ×(0, T ) and boundary condition u3 = 0 on �s ×(0, T ) are equivalent 
to the following integral formula for the vertical velocity:

u3(t,x, z) =
0∫

z

∇x · u(t,x, s)ds. (1)

Moreover, the following equality holds in S × (0, T ):

0∫
−D(x)

∇ · U(t,x, z)dz = ∇x · 〈u〉(t,x) − (u, u3)(t,x,−D(x)) · (∇x D(x),1) = 0, (2)

where 〈u〉 = 〈u〉(t, x) denotes the flow rate of the water column of the horizontal velocity:

〈u〉(t,x) =
0∫

−D(x)

u(t,x, z)dz.

Therefore, since (∇x D(x), 1) is parallel to the normal vector (nx, n3) on �b , assuming the incompressibility equation ∇ ·U = 0
in � × (0, T ), the so-called slip condition u · nx + u3n3 = 0 on �b × (0, T ) is equivalent to the constraint ∇x · 〈u〉 = 0 in 
S × (0, T ) [27–29].

Then, problem (P) can be reformulated as the following integro-differential problem:
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