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The multidomain Legendre–Galerkin Chebyshev-collocation method is considered to solve 
one-dimensional linear evolution equations with two nonhomogeneous jump conditions. 
The scheme treats the first jump condition essentially and the second one naturally. 
We adopt appropriate base functions to deal with interfaces. The proposed method can 
be implemented in parallel. Error analysis shows that the approach has an optimal 
convergence rate. The proposed method is also applied to computing the one-dimensional 
Maxwell equation and the one-dimensional two phase Stefan problem, respectively. 
Numerical examples are given to confirm the theoretical analysis.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The classical spectral methods are preferable to solve problems with smooth solutions on single and complex domains in 
[4,5]. However, they are not suitable to solve problems with jump conditions arising in scientific computations as in [14,2,3].

Various numerical methods are proposed to solve problems with jump conditions. The Yee scheme exhibits local di-
vergence and losses of global convergence for the approximation of the discontinuous variable [8]. In [27], the implicit 
derivative matching method is present to restore the accuracy of high-order finite-difference time-domain methods. Some 
immersed finite volume and finite element methods are developed to solve elliptic interface problems in [17,11,20,12]. High-
order accurate difference potentials methods for elliptic and parabolic problems with interfaces are developed in [10,1]. 
Multidomain pseudospectral methods are proposed for solving nonlinear convection–diffusion equation in [15].

In this paper, we consider the following parabolic equation with two nonhomogeneous jump conditions as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t U − ∂x(ε∂xU ) = f (x, t), x ∈ I1 ∪ I2, t ∈ (0, T ],
[U ]0 = α, [ε∂xU ]0 = β, t ∈ (0, T ],
U (−1, t) = U (1, t) = 0, t ∈ [0, T ],
U (x,0) = U0(x), x ∈ I,

(1.1)
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where I1 = (−1, 0), I2 = (0, 1) and I = (−1, 1), ε|Ii = εi is positive piecewise constant, the jump is defined by [v]0 =
v(0+) − v(0−), and α, β are constants. Such jump conditions arise in many areas [14,2,12]. The multidomain Legendre–
Galerkin Chebyshev-collocation (MLGCC) method is developed to solve the problem (1.1). The scheme is based on the 
Legendre method, but the right and initial terms are collocated by the Chebyshev–Gauss–Lobatto (CGL) points. The Crank–
Nicolson method is employed for the time discretization. The scheme treats the first jump condition essentially and the 
second one naturally. As in [15], the appropriate base functions are constructed to deal with the interface for solving the 
problem (1.1) in parallel. The stability and the optimal rate of convergence are derived. Applications of the MLGCC method 
to the one-dimensional (1D) Maxwell equation and the 1D two phase Stefan problem are considered.

The article is organized as follows. In Section 2, some notations and the scheme can be presented. In Section 3, results 
on approximation are given. In Section 4, we prove the stability and convergence of the fully discrete scheme. Some corre-
sponding numerical results are given. In Section 5 and 6, we use our method to solve the 1D Maxwell equation and the 1D 
two phase Stefan problem, and numerical results also are presented.

2. Notations and schemes

In the section, some notations and the MLGCC scheme are presented. Let (·, ·) J and ‖ · ‖ J be the inner product and the 
norm of the space L2( J ), respectively. For any non-negative integer σ > 0, we adopt the standard notation Hσ ( J ) for the 
Sobolev space equipped with the norm ‖ · ‖σ , J and the semi-norm | · |σ , J . We drop the subscript J whenever J = I . Let 
H−1(I) = (H1

0(I))′ be the dual space. Denote by x̂i
j the CGL nodes on Î = (−1, 1) and we set a0 = −1, a1 = 0, a2 = 1. Define 

hi = ai − ai−1 and

I i
N = {xi

j : xi
j = hi x̂i

j + ai−1 + ai

2
, 0 ≤ j ≤ Ni, i = 1,2}. (2.1)

In this paper, we shall use the piecewise Sobolev spaces. Let ui := u|Ii and define

H̃σ (I) = {u : u|Ii ∈ Hσ (Ii), i = 1,2},
H̃1

0,� = {u ∈ H̃1(I) : u(−1) = u(1) = 0, [u]0 = α},
with the broken semi-norm

|u|H̃σ (I) = (
∑

i=1,2

|u|2σ ,Ii
)1/2.

Let PNi be the space of polynomials of the degree at most Ni . The piecewise polynomial spaces are defined as

V �
N = {ϕ ∈ H̃1

0,�(I) : ϕ|Ii ∈ PNi , i = 1,2},
V N = {ϕ ∈ H1

0(I) : ϕ|Ii ∈ PNi , i = 1,2}. (2.2)

The problem (1.1) can be written in a weak form: find U (t) ∈ H̃1
0,�(I) such that for any V ∈ H1

0(I),{
(∂t U , V ) + ∑

i=1,2
(ε∂xU , ∂x V )Ii = ( f , V ) − βV (0), t > 0,

U (x,0) = U0(x), x ∈ I,
(2.3)

where the first jump condition is treated essentially and the second one naturally. The semi-discrete Legendre–Galerkin 
approximation is to find uN ∈ V �

N such that for any ϕ ∈ V N ,{
(∂t uN ,ϕ) + ∑

i=1,2
(ε∂xuN , ∂xϕ)Ii = (IC

N f ,ϕ) − βϕ(0), t > 0,

uN(x,0) = IC
N U0(x), x ∈ I,

(2.4)

where IC
N is the Chebyshev interpolation operator such that

(IC
N v)|Ii (xi

j) = v|Ii (xi
j), xi

j ∈ I i
N , 0 ≤ j ≤ Ni, i = 1,2. (2.5)

Let τ be the mesh size in variable t and set tk = kτ , k = 0, 1, · · · , nT (nT τ = T ). For simplicity, we denote uk(x) := u(x, tk)

by uk and define

uk
t = uk+1 − uk

τ
, ūk = uk+1 + uk

2
. (2.6)

The Crank–Nicolson method is applied to (2.4) in the time discretization. Thus, the fully discrete scheme is to find uk
N ∈ V �

N
such that for any ϕ ∈ V N ,



Download English Version:

https://daneshyari.com/en/article/4644814

Download Persian Version:

https://daneshyari.com/article/4644814

Daneshyari.com

https://daneshyari.com/en/article/4644814
https://daneshyari.com/article/4644814
https://daneshyari.com

