

The basins of attraction of Murakami's fifth order family of methods

CrossMark

Changbum Chun ${ }^{\text {a }}$, Beny Neta ${ }^{\text {b,*, }}{ }^{\text {, }}$
${ }^{\text {a }}$ Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
${ }^{\mathrm{b}}$ Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, United States

ARTICLE INFO

Article history:

Received 10 November 2015
Received in revised form 28 June 2016
Accepted 27 July 2016
Available online 3 August 2016

Keywords:

Iterative methods
Order of convergence
Basin of attraction
Extraneous fixed points

Abstract

In this paper we analyze Murakami's family of fifth order methods for the solution of nonlinear equations. We show how to find the best performer by using a measure of closeness of the extraneous fixed points to the imaginary axis. We demonstrate the performance of these members as compared to the two members originally suggested by Murakami. We found several members for which the extraneous fixed points are on the imaginary axis, only one of these has 6 such points (compared to 8 for the other members). We show that this member is the best performer.

Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

There is a vast literature on the solution of nonlinear equations, see for example Ostrowski [19], Traub [23], Neta [16] and Petković et al. [20]. In this paper we consider a fifth-order family of methods and show how to choose the best parameters. We will compare the performance of the two originally suggested members to two new ones by using the idea of basin of attraction and analyzing the extraneous fixed points.

Murakami [15] has developed a fifth order family of methods

$$
\begin{equation*}
x_{n+1}=x_{n}-a_{1} u_{n}-a_{2} w_{2}\left(x_{n}\right)-a_{3} w_{3}\left(x_{n}\right)-\psi\left(x_{n}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{n}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& w_{2}\left(x_{n}\right)=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}-u_{n}\right)}, \tag{2}
\end{align*}
$$

[^0]http://dx.doi.org/10.1016/j.apnum.2016.07.012
0168-9274/Published by Elsevier B.V. on behalf of IMACS.
\[

$$
\begin{aligned}
& w_{3}\left(x_{n}\right)=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}+\beta u_{n}+\gamma w_{2}\left(x_{n}\right)\right)}, \\
& \psi\left(x_{n}\right)=\frac{f\left(x_{n}\right)}{b_{1} f^{\prime}\left(x_{n}\right)+b_{2} f^{\prime}\left(x_{n}-u_{n}\right)} .
\end{aligned}
$$
\]

This family is of order five when we take

$$
\begin{align*}
& a_{1}=\frac{1}{6}\left(1+\frac{4 \gamma+1}{\theta}\right), \quad a_{2}=\frac{1}{\theta-1}\left(\frac{1}{6} \theta-\frac{2}{3} \gamma-\frac{1}{3}\right), \quad a_{3}=\frac{2}{3}, \\
& b_{1}=-\frac{6 \theta(\theta-1)^{2}}{4 \gamma+1}, \quad b_{2}=\frac{6 \theta^{2}(\theta-1)}{4 \gamma+1}, \quad \beta=-\gamma-\frac{1}{2}, \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\theta=\frac{16 \gamma+5}{4(4 \gamma+1)} \tag{4}
\end{equation*}
$$

Murakami suggested the following two possibilities:

$$
\begin{align*}
& \gamma=0, \quad a_{1}=0.3, \quad a_{2}=-0.5, \quad a_{3}=\frac{2}{3} \\
& b_{1}=-\frac{15}{32}, \quad b_{2}=\frac{75}{32}, \quad \beta=-\frac{1}{2} \tag{5}
\end{align*}
$$

and

$$
\begin{array}{ll}
\gamma=-0.5, \quad a_{1}=-\frac{1}{18}, \quad a_{2}=-\frac{1}{2}, \quad a_{3}=\frac{2}{3} \\
b_{1}=\frac{9}{32}, \quad b_{2}=\frac{27}{32}, \quad \beta=0 . \tag{6}
\end{array}
$$

The idea there probably to choose one of the parameters to be zero, i.e. either $\gamma=0$ or $\beta=0$. As it turns out these parameters are not far from the best.

In this paper, we find the best possible value of the parameter γ. We will use two criteria we have developed in previous work [7] based on the location of the extraneous fixed points. In the next section, we discuss the extraneous fixed points. In section 3 we will discuss the two criteria and give the best parameter based on these criteria. In section 4 we describe the basins of attraction for the best members of the family for 7 different examples. We close with conclusions.

2. Extraneous fixed points

For the Murakami family $z_{n+1}=M_{f}\left(z_{n}\right)$, where

$$
\begin{aligned}
& M_{f}(z)=z-a_{1} u_{f}(z)-a_{2} w_{2, f}(z)-a_{3} w_{3, f}(z)-\psi_{f}(z), \\
& u_{f}(z)=\frac{f(z)}{f^{\prime}(z)}, \\
& w_{2, f}(z)=\frac{f(z)}{f^{\prime}\left(z-u_{f}(z)\right)}, \\
& w_{3, f}(z)=\frac{f(z)}{f^{\prime}\left(z+\beta u_{f}(z)+\gamma w_{2, f}(z)\right)}, \\
& \psi_{f(z)}=\frac{f(z)}{b_{1} f^{\prime}(z)+b_{2} f^{\prime}\left(z-u_{f}(z)\right)},
\end{aligned}
$$

we explore its conjugacy on quadratic polynomials. We begin with a preliminary result.

Lemma 1. Let $f(z)$ be an analytic function on the Riemann sphere, and let $T(z)=\alpha z+\beta, \alpha \neq 0$, be an affine map. If $g(z)=(f \circ T)(z)$, then we have

https://daneshyari.com/en/article/4644819

Download Persian Version:
https://daneshyari.com/article/4644819

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cbchun@skku.edu (C. Chun), bneta@nps.edu (B. Neta).
 1 Fax: +1 (831) 6562355.

