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This paper presents a finite volume scheme for a scalar one-dimensional fluid–particle 
interaction model. When devising a finite volume scheme for this model, one difficulty that 
arises is how to deal with the moving source term in the PDE while maintaining a fixed 
grid. The fixed grid requirement comes from the ultimate goal of accommodating two or 
more particles. The finite volume scheme that we propose addresses the moving source 
term in a novel way. We use a modified computational stencil, with the lower part of the 
stencil shifted during those time steps when the particle crosses a mesh point. We then 
employ an altered convective flux to compensate the stencil shifts. The resulting scheme 
uses a fixed grid, preserves total momentum, and enforces several stability properties in 
the single-particle case. The single-particle scheme is easily extended to multiple particles 
by a splitting method.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns a one-dimensional model of fluid–structure interaction proposed in [10]:⎧⎪⎨
⎪⎩

ut + ∂x(u2/2) = λ
(
h′(t) − u

)
δ(x − h(t)), (x, t) ∈R×R+

mh′′(t) = λ
(
u(h(t), t) − h′(t)

)
, t ∈R+

u(x,0) = u0(x), (h(0),h′(0)) = (h0, v0).

(1.1)

Here δ(x) denotes the Dirac delta measure concentrated at x = 0. The function u = u(x, t) models the velocity of the fluid, 
h(t) models the location of a particle at time t , λ > 0 is a drag coefficient, and m > 0 is the mass of the particle.

The fluid velocity is governed by the inviscid Burgers equation, and the particle–fluid coupling is due to friction, more 
specifically the drag term λ 

(
u − h′) which appears in both the PDE and the ODE in (1.1). Since there is no viscosity, the 

velocity u(x, t) admits entropy weak solutions, meaning that shock waves occur. This leads to complex interactions between 
the resulting shock wave and the particle. The model is readily extended (at least formally) to accommodate multiple 
particles, and then there are interesting features of the solutions that include particles drafting and passing by one another.

The model (1.1) presents several conceptual and computational difficulties. First is the singular source term on the right 
side of the PDE in (1.1). Because there is generally a jump in the velocity u at the location of the particle x = h(t), the source 
term is not a distribution. Next, the ODE governing the particle motion has a discontinuous right hand side. Finally, and this 
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is the focus of the present paper, is the fact that the source term is moving. From a computational point of view, a potential 
method of dealing with this is to use a moving grid, so that the particle is always located at a grid cell boundary. However, 
it is not likely that this approach extends readily to the case where there is more than one particle, especially when the 
particle paths intersect. For this reason, a method that uses a fixed grid is desirable.

The model (1.1) has been studied in detail in a series of papers [3,5–7,10]. In [10] Lagoutière, Seguin and Takahashi 
provide a definition of solutions for (1.1) by studying two regularizations. They use a viscous regularization, which results 
in entropy inequalities, and they mollify the delta function, which leads to the proper interpretation of the nonconservative 
product. With these definitions in hand they completely solve the Riemann problem for (1.1), and describe the asymptotic 
behavior of solutions.

In [5], Andreianov, Lagoutière, Seguin and Takahashi propose a definition of entropy solution for (1.1), address the 
well-posedness of the problem, and introduce two finite volume methods for computing approximate solutions. One is 
a Glimm-like scheme, and the other is a well-balanced scheme that uses nonrectangular space–time cells near the interface. 
Both of the finite volume methods employ random sampling for placing the particle at a mesh interface at each time step. 
The nonconservative source term is handled by using a certain well-balanced scheme that was analyzed in [7]. The proper 
coupling of the ODE to the PDE results by enforcing a conservation of momentum principle. With these techniques they 
avoid the use of a moving mesh, and also avoid the use of a Riemann solver for the full model. A splitting technique is 
employed in order to accommodate multiple particles.

In [7], Andreianov and Seguin study in detail the model

ut +
(

u2/2
)

x
= −λuδ(x), u(x,0) = u0(x). (1.2)

This can be viewed as a simplification of the full model (1.1), where the particle is stationary. Its analysis is an important 
step in understanding (1.1), due to the presence of the nonconservative product on the right side. In order to prove existence, 
and for the purpose of practical computation of solutions, the authors construct a finite volume scheme, which is the one 
that we use as the starting point for our new scheme for (1.1). In order to establish well-posedness, the authors use the 
theory of conservation laws with discontinuous flux [4].

In [6], Andreianov, Lagoutière, Seguin and Takahashi prove well-posedness of the model (1.1), assuming that the initial 
data is of bounded variation. A wave-front tracking algorithm is used to generate approximate solutions, and among other 
things, a B V estimate is established for the approximations.

In [3], Aguillon, Lagoutière and Seguin propose a class of finite volume schemes for (1.1). The schemes are similar to 
those in [5], the important difference being that a moving grid is used, in order to keep the particle located at a fixed cell 
boundary. The authors are able to provide a proof of convergence to the unique entropy solution of (1.1).

Very recently, a generalized version of (1.1), where the fluid is governed by the inviscid compressible Euler equations, 
has been studied by Aguillon [2,1].

In this paper we follow [5], starting from the same well-balanced scheme for (1.2), coupling the ODE to the PDE via 
conservation of momentum, and using a splitting method to accommodate two or more particles. Our contribution is an 
alternative method of handling the moving source term. We use a modified computational stencil, with the lower part of the 
stencil shifted during those time steps when the particle crosses a mesh point. We then employ an altered convective flux 
to compensate the stencil shifts. The resulting scheme uses a fixed grid, preserves the total momentum of the system, and 
for the single-particle model, it enforces a bound on the total variation of the solution. By testing the new scheme against 
Riemann problems (where the solutions are known from [10]), we find that our new scheme produces approximations that 
seem to converge to the correct solutions as the mesh size shrinks.

The remainder of this paper is organized as follows. In Section 2, we present our scheme for the case of a single particle, 
and then prove several stability properties of the scheme. In Section 3, we describe our splitting algorithm, which extends 
the single-particle scheme to the case of two particles. In Section 4, we describe a number of numerical experiments, 
the results of which indicate that our new method produces approximate solutions that are consistent with the physically 
relevant ones discussed in [3,5,6,10]. Section 5 is a brief conclusion.

2. Single particle

We use a uniform spatial mesh size �x, and temporal step size �tn that can be variable. Define

x j = j�x, , j ∈ Z, t0 = 0, tn+1 = tn + �tn, n ≥ 0, (2.1)

and let μn = �tn/�x. We denote by Un
j the finite-difference approximation of u(x j, tn), and

Un := (
. . . , Un

−2, Un
−1, Un

0, Un
1, Un

2, . . .
)
,

∥∥Un
∥∥∞ := sup

j∈Z

∣∣∣Un
j

∣∣∣ . (2.2)

We will use the following finite difference notation:

�+Un
j = Un

j+1 − Un
j , �−Un

j = Un
j − Un

j−1. (2.3)
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