
Applied Numerical Mathematics 110 (2016) 174–189

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

The inexact-Newton via GMRES subspace method without line 

search technique for solving symmetric nonlinear equations ✩

Jueyu Wang, Detong Zhu ∗

Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 June 2015
Received in revised form 11 August 2016
Accepted 23 August 2016
Available online 30 August 2016

Keywords:
Inexact-Newton method
GMRES method
Nonlinear equations
Global convergence

In this paper, we propose an inexact-Newton via GMRES (generalized minimal residual) 
subspace method without line search technique for solving symmetric nonlinear equations. 
The iterative direction is obtained by solving the Newton equation of the system 
of nonlinear equations with the GMRES algorithm. The global convergence and local 
superlinear convergence rate of the proposed algorithm are established under some 
reasonable conditions. Finally, the numerical results are reported to show the effectiveness 
of the proposed algorithm.
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1. Introduction

In this paper, we focus on the numerical solution of systems of symmetric nonlinear equations:

g(x) = 0, x ∈ Rn, (1.1)

where g : Rn → Rn is continuously differentiable. We will focus our attention on the case where the Jacobian H(x) = ∇g(x)
of g is symmetric for all x ∈ Rn . This problem comes from unconstrained optimization problems, when g is the gradient 
mapping of some function f : Rn → R, (1.1) is just the first order necessary condition for the unconstrained optimization 
problem as follows

min f (x) x ∈ Rn. (1.2)

Among all kinds of methods for solving systems of nonlinear equations, Newton method is one of the most elementary, 
popular and important methods. One of the advantages of the method is its local quadratic convergence. However, its 
computational cost is expensive, particularly when the size of the problem is very large, because at each iteration step, the 
corresponding Newton iteration equation of (1.1) at the kth iteration as follows

Hk v = −gk, (1.3)

should be solved exactly. Here gk = g(xk), Hk = H(xk) is the symmetric Jacobian matrix of g(x) at the current iterate xk . 
In order to reduce the computational cost of Newton method, Dembo, Eisenstat and Steihaug proposed and studied inexact 
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Newton method in [13] which was a generalization of Newton method. The inexact Newton-type method aims to stop the 
iteration with the relative residual less than a given tolerance. By choosing suitable stopping criteria, we can reduce the 
total cost of the whole iterations. Evidently, at each iteration step of the inexact Newton method we only need to solve the 
Newton equation approximately by an efficient iteration solver for systems of linear equations such as the classical splitting 
methods or the modern Krylov subspace methods. This makes the inexact Newton method more practical and effective than 
the Newton method in actual applications, because its cost for computing a Newton step may be considerably reduced. 
Research on inexact-Newton method has widely expanded over the last few decades, and reviews can be found in An [1]
and Eisenstat and Walker [15]. The stopping relative residual control guarantees the local convergence of the method [15,16]
under the usual assumptions for inexact-Newton’s method. However, iterative methods with global convergence behavior 
are more practical and efficient for solving nonlinear equations and optimization problems. The backtracking procedure or 
trust-region technique is the typical globalization strategy. With the development of Krylov subspace projection methods, 
some hybrid globally convergent modifications of inexact-Newton methods have been considered to enhance convergence 
from arbitrary starting points. A class of methods based on the Arnoldi procedure [3] like FOM/IOM and mainly GMRES [22]
is widely used as the inner iteration for inexact-Newton methods [4,9].

We know that if the problem size n is very large, and the Jacobian matrix is sparse, the Krylov subspace iteration 
method GMRES is a powerful algorithm for computing an inexact Newton step [10]. These combined methods are called 
inexact Newton–Krylov methods or nonlinear Krylov subspace projection methods. These methods have the virtue of re-
quiring minimum matrix storage and potential matrix-free implementations, resulting in a distinct advantage over direct 
methods for solving the large Newton equations. Newton-type iteration schemes for solving the nonlinear equations prob-
lem using Krylov subspace projection methods as an inner linear solver are considered by many authors including Brown 
and Saad [7,8]. Their computational results show that these methods can be quite effective for many classes of problems 
in the context of systems of partial differential equations or ordinary differential equations. An attractive feature of the 
Newton–Krylov method is that it only requires the action of the Jacobian matrix H(x) on a vector v , and H(x)v can be 
accurately approximated by a difference quotient of the form

H(x)v ≈ g(x + θ v) − g(x)

θ
, (1.4)

where θ is a small positive number. The approximation given by (1.4) does not require an explicit knowledge of the Jaco-
bian matrix, which is suitable for large-scale problems. Therefore, these Newton-GMRES type methods could avoid direct 
computations of the Jacobian matrices, and then results in a matrix-free iteration process [5,18].

Stimulated by the progress in these aspects, the purpose of this paper is to propose an inexact-Newton via GMRES 
subspace method for solving symmetric nonlinear equations (1.1). We are concerned with an inexact-Newton via GMRES 
subspace method, where GMRES is used as the inner iteration solver for solving (1.3) approximately. This method is an 
extension of Newton-GMRES without backtracking techniques designed to solve systems of nonlinear equations. The glob-
alization strategy of the proposed method depends on the property of GMRES iteration and the acceptable rule of search 
direction. GMRES iteration guarantees that the residual norm ‖Hk v + gk‖ of (1.3) is nonincreasing at each iteration. Further, 
we obtain the conclusion of Lemma 3.2, i.e., ‖Hk v + gk‖ ≤ τ‖gk‖ for each v generated by the GMRES iteration. Meanwhile, 
we combine the acceptable rule (2.6) of search direction and the predicted reduction ‖gk‖ − ‖Hk vi + gk‖ satisfying the 
sufficient decrease condition (Lemma 3.3) to obtain a sufficient decrease of the actual reduction on ‖g‖ at each iteration. 
Thus, we obtain the global convergence condition which is equal to the condition in [15]. Further, we point out that our 
method is consistent with efficient matrix-free implementation.

The paper is organized as follows. In Section 2, we review the preliminaries of GMRES iteration and present the main 
algorithm. The properties of the proposed algorithm are proved in Section 3. The global convergence and the local superlin-
ear convergence rate of the algorithm are established under some reasonable conditions in Section 4. The results of some 
numerical experiments of the algorithm are reported in Section 5. Finally, in Section 6, we end the paper with a brief 
conclusion.

2. Preliminaries of GMRES iteration and algorithm description

At each iteration of the inexact-Newton algorithm, we must obtain an approximate solution of the linear system (1.3)
i.e.,

Hk v = −gk, (2.1)

where gk = g(xk), Hk is the symmetric Jacobian matrix of g(x) at xk and nonsingular. If v0 is an initial guess for the true 
solution of (2.1), then letting v = v0 + z, by substituting this relation into (2.1), we obtain the equivalent system after some 
rearrangement

Hkz = −gk − Hk v0 = r0,

where r0 is the initial residual. Define the Krylov subspace K (Hk, r0, i),
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