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In this paper we analyze the convergence of the domain decomposition method applied 
to transport problems on networks. In particular, we derive estimates for the number of 
required iterations for linear problems. These estimates can be used to determine when 
the implementation of domain decomposition methods would be beneficial for this type of 
problems.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many physical processes can be, in first approximation, modeled as transport problems on networks; vehicular traffic 
flows [9,10], blood flow [6,15–17] or gas flow through pipe networks [2,5] are but three examples. Large networks can have 
thousands or even millions of edges, as in vascular systems for instance. The choice of efficient numerical strategies is thus 
of paramount importance. The goal of the paper is to analyze under what circumstances the use of domain decomposition 
(DD) methods is advantageous.

For simplicity, we consider linear transport problems on networks

∂

∂t
qei + Aei

∂

∂x
qei = 0, i = 1, . . . , M, (1)

where ei is the i-th edge of an M-edge network and where qei ∈ R
N stands for the state variables on ei , Aei ∈ R

N×N being 
a constant matrix associated to ei . By assumption, our problem is one of transport; in other words, it is hyperbolic: each 
matrix Aei is diagonalizable with real eigenvalues. Junction conditions, usually algebraic constraints, have to be prescribed 
at the nodes of the network. These conditions can be quite complicated depending on the eigenstructure of Aei . To simplify 
our problem and focus on the analysis of the domain decomposition method, we consider the linear acoustics equations, 
which has symmetric eigenvalues and therefore relatively simple junction conditions can be imposed. While the details and 
numerical examples are given for these equations only, we show how the theory can be generalized to a linear constant 
coefficient system of the form (1), as long as appropriate junction conditions are given, which is very complicated in general, 
see Section 4.
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DD methods were originally developed for steady state problems. In this work, the spatial dimension is decomposed 
into the various edges of the network. When domain decomposition is applied to time dependent problems, at least two 
approaches are possible. First, DD can be applied spatially at each time step, see for instance [1,18]. Second, it can be applied 
in a spatio-temporal way, i.e., on cylinders corresponding to products of spatial subdomains with the entire computational 
time interval. This approach was introduced in [3,4] and later applied to the one-dimensional wave equation [7,8]. As 
detailed in Section 2, the second approach is used in this work, where the domains are the edges of the network.

Considerable work has been done in analyzing DD methods for transport problems defined on networks, see [12–14]. In 
this work, we use characteristics analysis to estimate the number of iterations necessary for the DD method to converge, 
disregarding numerical error. We show that this estimate depends upon on propagation speeds along each edge as well as 
on the length T of the considered time interval during which the problem is solved. This estimate is a key point in the 
cost study of the DD method for the present network problems. This analysis is carried out in Section 3. Finally, Section 5
compares numerical results to the theoretical estimates.

2. Linear acoustics equations on a network domain

Consider a network G = (V , E), where V is the set of vertices (nodes) of the network, and E is the set of edges. Let M
denote the total number of edges in the network. Each edge ei is modeled by an interval [aei , bei ], aei < bei , possibly with 
either aei = −∞ or bei = ∞. A semi-infinite interval implies that the edge is an outlier, i.e., it is connected to the network 
on only one side.

We consider the particular transport problem given by the acoustics equations. We focus on this problem because of 
its simplicity, especially where junction conditions are concerned. The symmetric nature of the problem allows for easily 
implemented junction conditions and simplifies the convergence analysis of Section 3.

The linear acoustics equation on an arbitrary edge ei ∈ E of the network G reads(
∂

∂t
+

[
0 Kei

1/ρei 0

]
∂

∂x

)[
pei

uei

]
(x, t) = 0, x ∈ (aei ,bei ), t > 0, (2)

where pei is the pressure and uei is the velocity. The physical parameters Kei , ρei > 0 are assumed constant on the domain 
(aei , bei ). Initial conditions are given by

pei (x,0) = φei (x), x ∈ [aei ,bei ], (3)

uei (x,0) = ψei (x), x ∈ [aei ,bei ]. (4)

We assume φei (x) ∈ L2([aei , bei ]), ψei (x) ∈ L2([aei , bei ]). Boundary conditions are introduced below when we consider the 
junction conditions for linear acoustics.

The eigenvalues of the matrix 
[

0 Kei

1/ρei 0

]
from (2) are given by

λ1 = −cei λ2 = cei

where cei = √
Kei /ρei > 0 is the speed of sound. The problem is thus strictly hyperbolic. Through a change of variables,

wei = 1

2Zei

(−pei + Zei uei ) zei = 1

2Zei

(pei + Zei uei )

where Zei = ρei cei , we can rewrite (2) as

∂

∂t

[
wei

zei

]
(x, t)+

[−cei 0
0 cei

]
∂

∂x

[
wei

zei

]
(x, t) = 0, (5)

which is a decoupled system in terms of the characteristic variables wei , and zei . This form of the equations is used in the 
analysis below because of its direct connection to the speed and direction of propagation.

Given an edge ei parameterized by the interval [aei , bei ], we denote the vertex corresponding aei by ea
i and the vertex 

corresponding to bei by eb
i . The various adjacent edges to ei are also characterized in terms of their own orientation. More 

precisely, we set

Aei = {e j ∈ E : eb
j = ea

i }, Bei = {e j ∈ E : ea
j = ea

i },
Cei = {e j ∈ E : eb

j = eb
i }, Dei = {e j ∈ E : ea

j = eb
i }.

These adjacent edge sets are represented graphically in Fig. 1.
Since, for the above system, one eigenvalue is always positive and one is always negative, the resolution of the problem 

on edge ei requires one boundary condition at each end. Alternatively, and equivalently, if we consider a vertex v ∈ V along 
with G|v , the set of edges connected to v ,
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