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A new version of the alternating directions implicit (ADI) iteration for the solution of large-
scale Lyapunov equations is introduced. It generalizes the hitherto existing iteration, by 
incorporating tangential directions in the way they are already available for rational Krylov 
subspaces. Additionally, first strategies to adaptively select shifts and tangential directions 
in each iteration are presented. Numerical examples emphasize the potential of the new 
results.
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1. Introduction

We consider the generalized algebraic Lyapunov equation

A P E T + E P AT + B BT = 0, (1)

with A, E, P ∈ R
n×n and B ∈ R

n×m . The order n is assumed to be large and m small, m � n. Furthermore, the matrix E
has full rank, det(E) �= 0. The standard formulation of (1) results from setting E to identity. The solution P of the Lyapunov 
equation (1) represents the so-called controllability Gramian of a linear time-invariant dynamical system. It is used e.g. in 
model reduction by truncated balanced realization (TBR), see [1] for details.

Direct (also called dense) numerical solvers of (1) are available in matrix computation software [15]. However, for high-
dimensional problems with large n, they become inappropriate due to high memory requirements and execution time. 
A remedy is to employ iterative methods that can exploit the sparsity of the matrices A , E and B . These methods typically 
compute a low-rank factor Z , having less columns than rows. The approximation ̂P ≈ P is then given by the low-rank 
formulation ̂P := Z Z H . This reduces memory requirements, because only the low-rank factor Z has to be stored, instead of 
the full n-by-n matrix ̂P .

Here we focus on the alternating directions implicit (ADI) iteration in its low-rank formulation [12,13]. It successively 
accumulates the low-rank factor Z by a block of m columns. This, however, can be a drawback if m > 1 and a high number 
of iterations is necessary for sufficient approximation: a low-rank factor Z , growing by m columns per iteration, might 
become too large for reasonable processing.

In this work we propose a tangential generalization of the ADI iteration, for which the low-rank factor Z grows by only 
one column per iteration—irrespective of m. The hitherto existing ADI iteration based on blocks is included as a special 
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case. The tangential ADI iteration is most appropriately performed in combination with an adaptive shift selection. We also 
address this by suggesting a first procedure that determines new shifts and tangential directions on the fly.

In Section 2 relevant preliminaries are reviewed. A reformulation of the ADI iteration is presented in Section 3, from 
which the tangential version is derived in Section 4. The adaptive shift selection is addressed in Section 5 and numerical 
examples are given in Section 6.

Throughout the paper, we use the following notation: Ik denotes the k × k identity matrix. Complex conjugation of a 
matrix X is denoted by X ; X T means transposition and X H = X

T
is transposition with complex conjugation. The real and 

imaginary part of a complex X are given by X = Re(X) + ı Im(X), where ı is the imaginary unit. The open right half of the 
complex plane is denoted by C+ and �(A) denotes the spectrum of a quadratic matrix A .

2. Preliminaries

We review the low-rank ADI iteration for solving (1) in the following.

2.1. The ADI iteration

For a given set S = {s1, s2, . . . , sk} of complex valued shifts si ∈ C+ , the blocks Z i ∈ C
n×m of the low-rank factor Z =

[Z 1, Z 2, . . . , Zk] are given by the following ADI iteration for i = 2, . . . , k, [12]:

Z 1 = √
2 Re(s1) (A − s1 E)−1 B,

Z i =
√

Re(si)

Re(si−1)

[
I + (si + si−1) (A − si E)−1 E

]
Z i−1.

(2)

As A, E and B are real, we assume the set S to be closed under conjugation, causing also ̂P = Z Z H to be real. Typically, the 
set S is chosen a priori and reused periodically until convergence occurs [12,14]. The residual R ∈ R

n×n is the remainder in 
the original Lyapunov equation (1), after substituting P by ̂P :

R := A ̂P E T + E ̂P AT + B BT . (3)

In [4] and [16,17] it was independently shown, that the residual can be factorized as R = B⊥ BT⊥—with real B⊥ ∈ R
n×m , if 

the set S is closed under conjugation. One way to compute B⊥ is

B⊥ = B + E Z LT , with (4)

L := [√2 Re(s1)Im, . . . ,
√

2 Re(sk)Im ]. (5)

The notation B⊥ stems from the fact, that a specific projection can be associated to the ADI iteration: B⊥ is the residual 
after projecting B , and it fulfills the Petrov–Galerkin condition, see [17] for details. The low-rank formulation R = B⊥ BT⊥ al-
lows to compute the induced matrix 2-norm of the residual ‖R‖2 by the maximum eigenvalue of the m-by-m matrix B T⊥ B⊥: 
‖R‖2 = max �(BT⊥ B⊥). This can be done with low numerical effort, which is why one often uses ‖R‖2 as a convergence 
criterion in the ADI iteration.

2.2. The problem

The low-rank factor Z of the ADI iteration (2) gains a new block of m columns in each step. For problems that require 
many iterations for convergence, i.e. until ‖R‖2 is small enough, the final Z might become too large for reasonable process-
ing. It would be desirable, that for every shift si only one column, or as many columns as absolutely necessary, are added to 
the low-rank factor Z . An ad hoc solution would be to substitute B in (2) by Bb, where b ∈ C

m is referred to as a tangential 
direction in the following. However, as every block/column Z i in the iteration (2) originates from its predecessor Z i−1, this 
tangential direction is fixed for all time, and the left over directions in B would be completely neglected. Obviously, this 
generally cannot result in a good approximation.

Our first contribution will be a re-formulation of the ADI iteration (2). This re-formulation is more natural, as it incor-
porates the low-rank factor B⊥ of the residual, and it is essential for our second contribution: we show, how each shift si

can be equipped with an individual tangential direction bi . We will denote this variation with tangential (low-rank) ADI 
iteration (T-LR-ADI) in the following. As it is advisable to employ T-LR-ADI with adaptively selected shifts si and tangential 
directions bi , a first procedure of this kind is our third contribution. Because the results require the recently established 
connection of the ADI iteration to Krylov subspace projection methods [16,17], we briefly review this in the following 
subsections.
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