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We use a diffuse interface method for solving Poisson’s equation with a Dirichlet condition 
on an embedded curved interface. The resulting diffuse interface problem is identified as 
a standard Dirichlet problem on approximating regular domains. We estimate the errors 
introduced by these domain perturbations, and prove convergence and convergence rates 
in the H1-norm, the L2-norm and the L∞-norm in terms of the width of the diffuse 
layer. For an efficient numerical solution we consider the finite element method for which 
another domain perturbation is introduced. These perturbed domains are polygonal and 
non-convex in general. We prove convergence and convergences rates in the H1-norm and 
the L2-norm in terms of the layer width and the mesh size. In particular, for the L2-norm 
estimates we present a problem adapted duality technique, which crucially makes use of 
the error estimates derived for the regularly perturbed domains. Our results are illustrated 
by numerical experiments, which also show that the derived estimates are sharp.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction and main results

This paper considers the approximate solution of the following model problem by a diffuse interface method: Find 
u ∈ H1

0(�) such that

−�u = f in � \ �, u|� = g|� on �. (1)

Here, f ∈ L2(�) models volume sources in a convex polygonal bounded domain � ⊂ R
n , n = 2, 3, and g ∈ H2(�) defines 

the values of u on an interface � ∈ C1,1, where � ⊂ � is a closed manifold of co-dimension one, i.e. for n = 2 a curve, or a 
surface if n = 3. We assume that the interface � separates � into two domains � = D1 ∪� ∪ D2, where � = ∂ D1, see Fig. 1.

The analysis of (1) is well-established. For instance, if g does not depend on u, (1) can be separated into two independent 
Dirichlet problems on D1 and D2 respectively, and the theory for the Poisson equation with Dirichlet boundary conditions 
applies, cf. [26,29]. Alternatively, one may formulate (1) as a Dirichlet problem on � constrained by u = g on � and u = 0
on ∂�, which leads to a saddle-point formulation, see e.g. [16,27].

The numerical approximation of (1) has been investigated intensively. A first set of numerical algorithms relies on a 
triangulation of � which is sufficiently aligned with the interface, i.e. � is approximated by a polygon, the segments of 
which are edges (or faces) of the elements; see e.g. [7,12–14,21,44]. The construction of such a triangulation might be 
expensive or difficult in practice. Furthermore, if � = �(t) depends on time, problems similar to (1) need to be solved 
in each time step, and the triangulation has to be updated accordingly. In addition, one has to interpolate the data on 
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Fig. 1. Sketch of the geometry. � = D1 ∪ � ∪ D2.

the varying meshes in this case. Therefore, a lot of research has been conducted to construct accurate methods employing 
meshes which are not aligned with � but possess a “simple” structure and are fixed throughout the simulation; see for 
instance the immersed boundary method [42], the immersed interface method [33,37], immersed finite elements [36,39,
45], the fictitious domain method [5,27,28,40], the unfitted finite element method [7,19,31,34], the finite cell method [41], 
unfitted discontinuous Galerkin methods [9], or composite finite elements [30,38], and the references provided there.

In this work we will focus on a diffuse interface method for solving (1), see for instance [1,17,23,24,32,35,43]. In this 
method the sharp interface condition u = g on � is replaced by suitable conditions on u − g on a diffuse layer centered 
around �. Similar techniques have also been applied for solving coupled bulk-surface differential equations [1] or surface 
differential equations [10,20].

The constraint u = g on � is equivalent to the condition ‖u − g‖L2(�) = 0. In order to relax this condition on the sharp 
interface, we define the signed distance function

d�(x) =
{

−dist(x,�), x ∈ D1,

+dist(x,�), x ∈ D2,

and we let S : R → R be such that S(t) = t for |t| < 1 and S(t) = sign(t) for |t| ≥ 1. Introducing a positive parameter ε, we 
define a regularized indicator function of D1 as follows

χD1(x) ≈ ωε(x) = 1

2

(
1 + S(−d�(x)

ε
)
)
, x ∈ �.

Formally d� = |∇χD | dx ≈ |∇ωε| dx. Using the ε-tubular neighborhood Sε = supp(|∇ωε|) of �, this leads to the following 
approximation for integrals along the interface

‖u − g‖2
L2(�)

≈ 1

2ε

∫
Sε

|u − g|2 dx.

The reader might find a more detailed derivation of this approximation and other choices of S in [17]. We further notice 
that, to make this approximation well-defined, we need the function g to be defined on the diffuse layer. If g is defined 
on � only, one has to use a suitable extension; for instance a local extension is given by g̃(x + d�(x)∇d�(x)) = g(x) for 
x ∈ �, i.e. g̃ is constant off the interface. Thus, replacing the sharp interface constraint by the diffuse interface constraint ∫
Sε |u − g|2 dx = 0, which amounts to u = g on Sε , we are concerned with the following Dirichlet problem: Find uε ∈ H1

0(�)

such that

−�uε = f in � \ Sε, uε = g in Sε. (2)

Note that the particular choice of ωε is not important as long as Sε = supp(|∇ωε|) is a ε-tubular neighborhood of �, 
i.e. methods using double obstacle potentials to regularize the indicator function of χD will essentially lead to the same 
method.

The main purpose of this paper is to estimate the errors introduced by this diffuse interface method; (i) on the contin-
uous level and (ii) in a finite dimensional setting when using the finite element method, see below. The first result in this 
direction is the following approximation result on the continuous level.

Theorem 1.1. Let f ∈ L2(�) and g ∈ H2(�), and let u be the solution to (1), and let uε be the solution to (2). Then there exists a 
constant C > 0 independent of ε such that

1

ε
‖u − uε‖L2(�) + 1√

ε
‖∇u − ∇uε‖L2(�) ≤ C

(‖ f ‖L2(�) + ‖g‖H2(�)

)
.

The numerical approximation of (2) is still not straight-forward as the (sufficiently exact) integration over Sε is basi-
cally not easier than the integration along �. In order to obtain an efficient numerical scheme let Th be a shape regular 
triangulation of �, where h = max{diam(T ) : T ∈ Th} denotes the mesh size parameter, and let
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