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In this article, a class of second order parabolic initial-boundary value problems in the 
framework of primal hybrid principle is discussed. The interelement continuity requirement 
for standard finite element method has been alleviated by using primal hybrid method. 
Finite elements are constructed and used in spatial direction, and backward Euler scheme 
is used in temporal direction for solving fully discrete scheme. Optimal order estimates for 
both the semidiscrete and fully discrete method are derived with the help of modified 
projection operator. Numerical results are obtained in order to verify the theoretical 
analysis.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Consider a second order parabolic model problem

ut(x, t) − �u(x, t) = f (x, t) in � × (0, T ], (1.1)

u(x, t) = 0 on � × (0, T ], (1.2)

u(x,0) = u0(x) in �, (1.3)

where � is an open, bounded convex polyhedral subset of Rn with Lipschitz continuous boundary �, T is the fixed final 
time, ut = ∂u

∂t , � denotes 
∑n

i=1
∂2

∂x2
i

, f and u0 are appropriate smooth functions.

The weak formulation of problem (1.1)–(1.3) is to find u : [0, T ] → H1
0(�) such that

(ut, v)+ (∇u,∇v) = ( f , v) ∀v ∈ H1
0(�), t > 0,

u(0) = u0,

where (·, ·) is the usual inner product in L2(�). Standard finite element methods for solving (1.1)–(1.3) are based on the 
above formulation and are largely studied, we refer to Thomée [19], Wheeler [20]. In these methods a finite dimensional 
space of H1

0(�) is constructed made up with functions which are continuous along interelement boundaries.
The interelement continuity condition for the finite dimensional space which approximate H1

0(�) is a strong condition 
and can be relaxed which is well known as nonconforming methods. In nonconforming methods the finite dimensional 
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space is no longer a subspace of H1
0(�). For a detailed analysis of these methods for solving second order elliptic equations 

we refer to Crouzeix and Raviart [8], Iron and Razzaque [9] and Strang [16].
A more general approach known as primal hybrid method in which the interelement continuity is withdrawn by intro-

ducing a Lagrange multiplier. This type of method is firstly introduced by engineers Pian and Tong [13] and is viewed as 
a generalization of nonconforming methods. The primal hybrid method for second order elliptic problems is proposed by 
Raviart and Thomas [15] which is based on an extended variational principle. Similarly, the dual hybrid method for second 
order elliptic problems is proposed by Thomas [18] which is based on a complementary energy principle. Primal hybrid 
method for fourth order elliptic problem is discussed by Quarteroni [14]. A primal hybrid method for a strongly nonlin-
ear second order elliptic problem is discussed by Park [11]. Primal hybrid methods for second order quasi-linear elliptic 
problems is studied by Milner [10]. An application of the primal hybrid method to an optimal shape problem is estab-
lished in [5]. The idea of primal hybrid method is used to develop some nonconforming domain decomposition methods, 
for instance see [2,12] for mortar finite element method with Lagrange multipliers. There are a few literatures available on 
the primal hybrid method for elliptic problems, but hardly any articles are available on primal hybrid method applied to 
parabolic problems. For instance, error estimates using cell discretization method for some parabolic problems are discussed 
by Swann [17] which is a generalization of primal hybrid method. Therefore, it is important to study these methods further. 
For a general discussion on hybrid methods we refer to [4].

In this article, we propose a finite element approximations of the parabolic initial-boundary value problems (1.1)–(1.3) in 
the primal hybrid context. Optimal order estimates for semidiscrete methods for both primal and hybrid variables are estab-
lished. Using backward Euler method, a fully discrete scheme is derived and optimal order error estimates are developed. 
The error analysis are performed with the help of a modified elliptic projection and an orthogonal projection. Numerical 
results are obtained to validate the theoretical estimates.

A brief outline of this article is as follows. In Section 2, we introduce some functional spaces required for our analysis 
purpose. In Section 3, we discuss some approximation spaces to derive primal hybrid formulation for the original problem 
and then we establish error analysis for the semidiscrete scheme. Section 4 is devoted to fully discrete scheme with error 
analysis. We give some numerical results in Section 5. Finally, we conclude in Section 6.

2. Preliminaries

We define the Sobolev spaces which are used in the sequel. For a non-negative integer m, we define Hm(0, T ; Y ) as

Hm(0, T ; Y ) =
⎧⎨⎩v : (0, T ) → Y :

m∑
j=0

T∫
0

∣∣∣∣∣
∣∣∣∣∣∂ j v

∂t j

∣∣∣∣∣
∣∣∣∣∣
2

Y

dt < ∞
⎫⎬⎭ (2.1)

and is equipped with the norm

||v||Hm(0,T ;Y ) =
⎛⎝ m∑

j=0

T∫
0

∣∣∣∣∣
∣∣∣∣∣∂ j v

∂t j

∣∣∣∣∣
∣∣∣∣∣
2

Y

dt

⎞⎠1/2

,

where Y is a Banach space with a norm || · ||Y . For m = 0, it corresponds to the space L2(0, T ; Y ). We define a multi index 
α = (α1, α2, · · · , αn) as a n-tuple of non-negative integers αi, 1 ≤ i ≤ n with |α| = α1 + α2 + · · · + αn and set

Dα = ∂ |α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

·

The Sobolev space of order m is defined as

Hm(�) =
{

v ∈ L2(�) : Dα v ∈ L2(�), |α| ≤ m
}

provided with a norm and a semi-norm

||v||m,� =
⎛⎝ ∑

|α|≤m

∫
�

|Dα v|2dx

⎞⎠1/2

, |v|m,� =
⎛⎝ ∑

|α|=m

∫
�

|Dα v|2dx

⎞⎠1/2

,

respectively. For m = 0, it corresponds to the space L2(�) and further we denote the L2-norm by || · ||L2(�) . We define a 
negative norm || · ||−m,� by:

||v||−m,� = sup
0 	=φ∈Hm(�)

(v, φ)

||φ||m,�

,

where v ∈ L2(�).
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