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This paper improves the inexact Kleinman–Newton method for solving algebraic Riccati 
equations by incorporating a line search and by systematically integrating the low-rank 
structure resulting from ADI methods for the approximate solution of the Lyapunov 
equation that needs to be solved to compute the Kleinman–Newton step. A convergence 
result is presented that tailors the convergence proof for general inexact Newton methods 
to the structure of Riccati equations and avoids positive semi-definiteness assumptions on 
the Lyapunov equation residual, which in general do not hold for low-rank approaches. In 
the convergence proof of this paper, the line search is needed to ensure that the Riccati 
residuals decrease monotonically in norm. In the numerical experiments, the line search 
can lead to substantial reduction in the overall number of ADI iterations and, therefore, 
overall computational cost.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We present improvements of the inexact Kleinman–Newton method for the solution of large-scale continuous-time al-
gebraic Riccati equations (CARE)

R(X) = C T C + AT X + X A − X B BT X = 0 (1.1)

with C ∈ Rp×n , A ∈ Rn×n , X = X T ∈ Rn×n , B ∈ Rn×r , and p + r � n. The algorithmic improvements consist of incorporating 
a line search and of systematically integrating the low-rank structure resulting from the ADI method for the solution of the 
Lyapunov equation

(A(k))T X (k+1) + X (k+1) A(k) = −C T C − X (k)B BT X (k), (1.2)
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where

A(k) = A − B BT X (k),

which has to be approximately solved in the k-th iteration. The paper is motivated by the recent work of Feitzinger et al. 
[10] who propose and analyze an inexact Kleinman–Newton method without line search, by Benner and Byers [3] who in-
corporate line search into the exact Kleinman–Newton method, and by the recent work of Benner et al. [4,6] on algorithmic 
improvements of low-rank ADI methods. The convergence result in [10] makes positive semi-definiteness assumptions on 
the difference between certain matrices and the residual of the Lyapunov equation that are in general not valid when the 
Lyapunov equation is solved with low-rank methods like, e.g., the low-rank ADI iteration [8]. Our convergence result follows 
the theory of general inexact Newton methods, but uses the structure of Riccati equations. We add the inexact solution of 
the Lyapunov equation to [3] and incorporate the low-rank structure.

Our convergence proof makes use of the fact that the Riccati residuals decrease monotonically in norm, which is ensured 
by the line search. There is no proof that the inexact low-rank Kleinman–Newton–ADI iteration converges globally without 
line search. On test examples resulting from the finite element approximation of LQR problems governed by an advection 
diffusion equation, the incorporation of a line search into the inexact low-rank Kleinman–Newton–ADI iteration can lead to 
substantial reduction in the overall number of ADI iterations and, therefore, overall computational cost.

The paper is organized as follows. In the next section, we recall a basic existence and uniqueness result for the unique 
symmetric positive semi-definite stabilizing solution of the CARE (1.1). Section 3 introduces the inexact Kleinman–Newton 
method with line search and presents the basic convergence result. The basic ingredients of ADI methods that are needed 
for this paper are reviewed in Section 4. Section 5 discusses the efficient computation of various quantities like the Newton 
residual using the low-rank structure. As a result, the computational cost of our overall algorithm is proportional to the 
total number of ADI iterations used; in comparison the cost of other components, such as execution of the line search, 
are negligible. Finally, we demonstrate the contributions of the various improvements on the overall performance gains in 
Section 6. As mentioned before, in our numerical tests, our improved inexact Kleinman–Newton method is seven to twelve 
times faster than the exact Kleinman–Newton method without line search.

Notation. Throughout the paper we consider the Hilbert space of matrices in Rn×n endowed with the inner product 
〈M, N〉 = tr

(
MT N

) =∑n
i, j=1 Mij Nij and the corresponding (Frobenius) norm ‖M‖F = (〈M, M〉)1/2 = (

∑n
i, j=1 M2

i j)
1/2. Fur-

thermore, given real symmetric matrices M, N , we write M � N if and only if M − N is positive semi-definite, and M 	 N if 
and only if M − N is positive definite. The spectrum of a symmetric matrix M is denoted by σ(M).

2. The Riccati equation

We recall an existence and uniqueness result for the continuous-time Riccati equation (1.1).

Definition 1. Let A ∈ Rn×n , B ∈ Rn×r , and C ∈ Rp×n . The pair (A, B) is called stabilizable if there exists a feedback matrix 
K ∈Rn×r such that A − B K T is stable, which means that A − B K T has only eigenvalues in the open left half complex plane 
C− . The pair (C, A) is called detectable if (AT , C T ) is stabilizable.

Notice that (A, B) is stabilizable if and only if (A, B B T ) is stabilizable and (C, A) is detectable if and only if (C T C, A) is 
detectable. Furthermore, we always use the word stable as defined in [16], whereas, in other literature, this is usually called 
asymptotically stable. Since, as in [16], asymptotically stable is the required property in all our applications we do not need 
to distinguish between stable and asymptotically stable and, therefore, simply use stable everywhere.

Assumption 2. The matrices A ∈ Rn×n , B ∈ Rn×r , and C ∈ Rp×n are given such that (A, B) is stabilizable and (C, A) is 
detectable.

If Assumption 2 holds, there exists a unique symmetric positive semi-definite solution X (∗) of the CARE (1.1) which is 
also the unique stabilizing solution. This follows from Theorems 8.5.1 and 9.1.2 (see also p. 244) in [16].

Furthermore, we show next that all symmetric positive semi-definite solutions of the CARE (1.1) are stabilizing. This 
result is important in our context, since we generate symmetric positive semidefinite iterates X (k) and require that A(k) is 
stable.

Theorem 3. If Assumption 2 holds, every symmetric solution X (∗) � 0 of the CARE (1.1) is stabilizing.

Proof. Let X = X T � 0 solve the CARE (1.1). We show that A − B BT X is stable by contradiction.
Assume that μ is an eigenvalue of A − B B T X with Re (μ) ≥ 0 and let v ∈ Cn\{0} be a corresponding eigenvector. The 

CARE (1.1) can be written as

(A − B BT X)T X + X(A − B BT X) = −C T C − X B BT X . (2.1)
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