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In this paper, we consider a class of severely ill-posed backward problems for linear 
parabolic equations. We use a convolution regularization method to obtain a stable 
approximate initial data from the noisy final data. The convergence rates are obtained 
under an a priori and an a posteriori regularization parameter choice rule in which 
the a posteriori parameter choice is a new generalized discrepancy principle based on 
a modified version of Morozov’s discrepancy principle. The log-type convergence order 
under the a priori regularization parameter choice rule and log log-type order under the 
a posteriori regularization parameter choice rule are obtained. Two numerical examples are 
tested to support our theoretical results.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider a class of backward problems for parabolic equations, given by

ut(x, t) + Lu(x, t) = 0, x ∈R, t ∈ (0, T ), (1.1)

u(x, T ) = f (x), lim|x|→∞ u(x, t) = 0, (1.2)

where L is a differential operator with respect to x, such as the second order elliptic operator Lu = −(uxx + vux − q) with 
constant coefficients and the space-fractional diffusion operator Lu = x Dα

θ u defined in next section.
The backward problems for parabolic equations are very important in various practical applications and there have many 

researches on these problems [3,6–8,20,21,23,29,34,18,38]. We will see in Section 2 that the backward problem (1.1)–(1.2) is 
severely ill-posed, refer to [23,34]. Therefore, a suitable regularization method should be used (e.g. [37]). In this paper, we 
consider a class of convolution regularization methods proposed firstly in [39]. That is, to find an approximate solution for 
the backward problem (1.1)–(1.2) by solving a new well-posed problem

(uδ
μ)t + Pμ(x) ∗ Luδ

μ = 0, (1.3)

uδ
μ(x, T ) = f δ(x), lim|x|→∞ uδ

μ(x, t) = 0, (1.4)

where “∗” denotes the convolution operation, and the family of functions Pμ(x), which involves a regularization parameter 
μ, is a suitably-chosen convolution kernel and f δ is a noisy function to f .
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The convolution regularization is a new method, and there are a few papers currently. The convolution method is related 
to the mollification method in [30,14] but there is an essential difference. The convolution method aims at mollifying 
the equation but the mollification method aims at mollifying the improper data [30,14]. For example, Manselli, Miller 
[26] and Murio [31,32] have used mollification methods to solve some ill-posed problems for the heat equation, but their 
method is working only on the Weierstrass kernel. In [14], Hào gave a choice of the mollification parameter and obtained a 
convergence estimate for a non-characteristic Cauchy problem of parabolic equations.

The regularization parameter may be chosen by either an a priori or an a posteriori method. The a priori choice is pretty 
straightforward and have been studied extensively, but it has a drawback that the a priori bound for the exact solution is 
unknown, and an incorrect bound will lead to a bad approximation, and sometimes we will prefer an a posteriori method. 
In general, the error estimate under the a posteriori parameter choice is hard to obtain, but it is more suitable in practical 
applications. We note that the authors have not provided an a posteriori parameter choice method in [39]. In this paper, we 
mainly focus on this point.

The most widely used a posteriori parameter choice method is Morozov’s discrepancy principle [10,12,17,33,35,36]. The 
various generalizations of Morozov’s discrepancy principle are developed in [1,2,4,5,11,13,16,22,24,10,19]. In this paper, 
Morozov’s discrepancy principle can not be used directly for obtaining a convergence rate. Thus we use a generalized 
discrepancy principle to choose the regularization parameter, which is different from Morozov’s discrepancy principle and 
its variations in the references mentioned above. The corresponding error estimates between the exact solution and the 
regularized solution can be derived by a carefully analysis. Two numerical examples are provided to verify the effectiveness 
of our proposed methods.

The paper is organized as follows. In Section 2, the convolution regularization method and the choice of convolution 
kernels are discussed. In Sections 3 and 4, we derive the convergence rates under the a priori and a posteriori rules for the 
choices of the regularization parameter. In Section 5 we give two numerical examples to illustrate the effectiveness of the 
a posteriori and the a priori choice rules. Finally, we give a conclusion in Section 6.

2. Convolution regularization method

We assume throughout the paper that all the functions involving x belong to L2(R), and ‖ · ‖ always denotes the L2

norm, i.e.

‖ f ‖ =
⎛⎝∫

R

| f (x)|2dx

⎞⎠1/2

(2.1)

and the function space H p(R) is defined by:⎧⎪⎨⎪⎩ f (x)| f ∈ L2(R),‖ f ‖p := 1√
2π

⎛⎝∫
R

(1 + ω2)p| f̂ (x)|2dx

⎞⎠1/2

< +∞

⎫⎪⎬⎪⎭ . (2.2)

It is a very natural idea to analyze pseudo-differential operators or the convolution operation in the frequency domain 
space, so we need to use the Fourier transform. The Fourier transform is given by

f̂ (ω) =
∫
R

eiωx f (x)dx, (2.3)

and the Parseval formula holds
√

2π‖ f ‖ = ‖ f̂ ‖. (2.4)

We define the operator L as a (possibly fractional) differential operator with respect to x, mapping from L∞((0, T ); Hk(R))

to L∞((0, T ); Hk−α(R)), given by the Fourier transform:

L̂u(ω, t) = l(ω)û(ω, t), (2.5)

and l : R →C is a function called the symbol of the operator L, satisfying the following conditions:

(L1) |l(ω)| ≤ a(1 + |ω|α), ω ∈ R, for a > 0 and α > 0;
(L2) Rel(ω) ≥ a1|ω|α, ω ∈ R, for a1 > 0 and α > 0.

The motivation of this definition is that some integer and fractional differential operators can be written as multipliers 
over the frequency space, and their growth as a function of ω is polynomial. The number α > 0 indicates the order of the 
operator L. Here are some examples of well-known evolution equations written in the following forms



Download	English	Version:

https://daneshyari.com/en/article/4644857

Download	Persian	Version:

https://daneshyari.com/article/4644857

Daneshyari.com

https://daneshyari.com/en/article/4644857
https://daneshyari.com/article/4644857
https://daneshyari.com/

