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1. Introduction

A high level of expectation exists within the CFD community with regard to the development of high-order methods. It
is envisaged that, once implemented within the production CFD solvers (steady and unsteady), they will dramatically reduce
the time needed for CFD analysis, and with that to design cycles. The ultimate hope is that, combined with the adjoint-based
techniques for a posteriori error estimation and anisotropic grid adaptation, high-order methods will allow to quantify and
efficiently reduce below any practically reasonable tolerance the numerical errors usually significantly contributing to the
CFD results for real-life applications.

As for the existing approaches to the design of high-order methods, finite element (FE) discretizations have quite a few
widely recognized advantages over the finite volume (FV) and finite difference schemes. These include relative compact-
ness of the stencils used in the approximation of the differential operators; the ability to universally and, in many cases,
rigorously, treat a wide variety of the boundary conditions, and relative technical ease with which high-order schemes of
basically any order can be implemented. In general, the FE approach for general unstructured grids is supported by much
more developed mathematical apparatus than the FV/FD approaches: in particular, the problem of approximation is uni-
versally solved by appealing to the optimality property of the piecewise polynomial FE spaces in the Sobolev’s functional
spaces [9].

Although the variety of finite element discretizations devised to deal with the advection-diffusion systems, such as
the steady-state Euler, Navier-Stokes and Reynolds-Averaged NS equations of the fluid dynamics, is extremely diverse, the
approaches to stabilization for these schemes fall pretty well into the following two large domains. The first employs poly-
nomial spaces with finite elements which are allowed to be discontinuous across the element interfaces. The reconciliation
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of the advective fluxes on these interfaces is done via the approximate Riemann solvers. The most representative family of
approaches in this group is built around the Discontinuous Galerkin (DG) method, originally by Baker [2]. This approach
turned out to be so general and flexible that in later decades it gave rise to an impressive amount of extensions and vari-
ations. The DG discretization uses the same mechanism for stabilization in the advection limit as the FV methods. This
natural way of stabilization in DG has, however, to be combined with a rather non-trivial treatment of the diffusion terms
with discontinuous polynomial spaces, a challenge DG methods share with the mixed finite element methods for the elliptic
equations.

The second stabilization approach starts from the finite element spaces of the globally continuous functions for rep-
resenting the solution of the PDE. The stabilization is achieved by modifying the space of the test functions within the
Petrov-Galerkin approach. The representative discretizations in this class are the Streamline Upwind Petrov-Galerkin (SUPG)
scheme, originally formulated by Hughes and Brooks [7] and its variants, such as, Galerkin-Least Squares (GLS) [18]. These
schemes can be characterized as residual schemes, as the stabilization they use is proportional to the strong residual of the
underlying PDE: the property naturally resulting in the consistency of these types of discretizations. It was not immediately
realized that in the core of this second approach to stabilization lies the universal deep principle of variational multiscale
resolution [17,15,20]: the paradigm reducing the problem of stability of the FE discretization to the question of accuracy
of the unresolved scales of the solution as represented on a given grid. This realization allowed to relate the SUPG/GLS
discretizations to such approaches as Residual Free Bubbles (RFB) and several others, originally devised and developed in-
dependently [6].

Impressive progress has been achieved in the last 2 decades in the unification of various FE schemes: within the DG-
and SUPG-type approaches to stabilization, respectively For the SUPG-type schemes this was done within the aforemen-
tioned multiscale paradigm. For the DG-type approaches the influential paper [1] unifies and classifies a wide variety of
the approaches to the stabilization with discontinuous FE spaces in the diffusion limit, and, in particular, includes the types
of stabilizations which were not originally devised as DG schemes (e.g., certain interface penalization approaches). For the
more novel, Hybridizable Discontinuous Galerkin (HDG) schemes (the ones of utmost interest for us in this study) Cockburn,
Gopalakrishnan and Lazarov in [10] have built an unification framework, which, in particular, allowed them to devise new,
hybridizable variants of the classical DG schemes.

Every substantial unification attempt so far has contributed to not just a better understanding of the mechanisms behind
the stabilization techniques for the advection-dominated PDEs, but also to the improvement of existing schemes and to the
construction of new ones. On the other hand, the connection of the two alternative concepts to stabilization is currently
understood only on quite abstract, conceptual level. See, for example, the paper of Brezzi et al. [5] which discusses, within
another general paradigm — the least-squares approach to stabilization, the common form of stabilization terms appearing
in both Discontinuous Galerkin and residual-based methodologies.

As noted above, the actual diversity in the stabilized FE schemes for the advection-diffusion systems is very high. A few
FE schemes exist which combine the ideas of using discontinuous FE spaces to achieve the DG-type stabilization with the
use of a globally continuous representation of the solution. Three such schemes are the Embedded Discontinuous Galerkin
scheme (EDG), which is the primal object for the current study, the Multiscale Discontinuous Galerkin (MDG) scheme by
Hughes et al. [19] and the Discontinuous Residual Free Bubble (DRFB) method by G. Sangalli [24]. The MDG and the DRFB
methods fit well into the paradigm of the variational multiscale-resolution approach. They are of interest for us in this
study because of their relation to EDG. It is also possible to combine the use of discontinuous finite element spaces with
the Petrov-Galerkin approach as does the DPG method by Demkowicz and Gopalakrishnan [12], though in a different way.

In this paper we relate the stabilization of certain DG-type schemes, namely, EDG, to the stabilization used in SUPG and
multiscale approaches. This connection is traced on not just a conceptual level (though this aspect is also important for
this study) but also on an analytical level. In particular, we show how to derive, under certain essential assumptions, the
SUPG discretization for both the Euler and Navier-Stokes equations, from the basically Riemann solver-based stabilization
employed by the HDG and EDG methods. This allows one to get insight into the analytical structure of both stabilization
mechanisms and propose possible improvements, working both ways. Along the way, the present analysis establishes the
conservation property of the EDG scheme over the dual volumes of the simplicial, unstructured grid, and provides some in-
sights into the structure of the flux-based boundary conditions for the Euler equations when discretized with the EDG/HDG
approaches. In the case of the advection systems the proposed analysis of the EDG discretization allows to accurately track
the differences between the EDG and MDG discretizations and to basically prove the equivalence of the EDG discretization
to the DRFB approach.

The layout of the paper is as follows. We start in section 2 by considering the steady state Euler equations. This section
is auxiliary in the sense that we explain the formalism for dealing with fluxes, test and trial functions and such, which is
then used throughout the presentation. In section 3 and the beginning of section 4 we review very briefly how the HDG
and EDG discretization are constructed for the Euler equations. The rest of the section 4 deals with the analysis of the EDG
scheme. We recast this scheme in a form similar in structure to the stabilized residual-based FE methods, such as SUPG.
As an almost free consequence of this reformulation we get the conservation property of the EDG (and HDG) schemes on
dual volumes and some insights into the structure of the flux boundary conditions for the EDG scheme. In section 5, within
the context of the EDG approach, the important concept of the local linearized problem for the correction is introduced.
Thereafter we show that the lowest order approximation to this local problem leads to the SUPG discretization with one of
the standard definitions of the SUPG stabilization matrix. Section 6 contains discussion of the obtained results in a wider
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