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A zone of increasingly stretched grid is a robust and easy-to-use way to avoid unwanted 
reflections at artificial boundaries in wave propagating simulations. In such a buffer zone 
there are two main damping mechanisms, dissipation and under-resolution that turns 
a traveling wave into an evanescent wave. We present analysis in one and two space 
dimensions showing that evanescent decay through under-resolution is a very efficient way 
to damp waves. The analysis is supported by numerical computations.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Non-reflecting boundary conditions are of vital importance in numerical simulations of convective flows and the research 
on non-reflecting boundary conditions has long going traditions. In general exact non-reflecting boundary conditions are 
global, both in space and time. There are also many local non-reflecting boundary conditions. They can be divided into 
three main types namely, local approximations of exact non-reflecting boundary conditions, see e.g. [7,8,11], buffer zones, 
see e.g. [12,1] and Perfectly Matched Layers, see e.g. [3,2].

In [4] an overview of non-reflecting boundary conditions for compressible flows is given. In the paper the vast devel-
opment of non-reflecting boundary conditions for linear problems is pointed out, whereas there is a need for enhanced 
development and knowledge of the performance of non-reflecting boundary conditions for non-linear flows such as turbu-
lent shear flows.

Most buffer zones involve a stretching of the grid, but damping can also be enhanced by a forcing function or artificial 
viscosity. The popularity of buffer zones lays in their simplicity. They are easy to implement and in most cases, the change 
in the time step restriction due to stability is small. However, unwanted reflections from buffer zones can occur either at 
the entrance at the buffer zones, due to e.g. grid stretching or sudden increase of artificial viscosity and forcing functions, 
or reflections at the outflow boundary due to too low damping within the buffer zone.

In [1] reflections from buffer zones due to under-resolution of outgoing waves, and the influence of different orders of 
artificial viscosity terms on the damping of reflections are studied. It is shown by numerical experiments for linear hyper-
bolic systems that artificial viscosity terms based on high-order undivided difference substantially reduce the reflections 
from the buffer zone. For a dispersive scheme, under-resolution of a wave can be seen as equivalent to lowering the phase 
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speed of the wave. Karni [14] suggested a slowing-down operator and a similar concept was investigated as the acoustic 
black hole layer boundary condition in [16].

A more simplistic approach is to use grid stretching in the buffer zone together with the same numerical scheme as 
in the interior computational domain. The main difficulty with this type of boundary zone is to determine how large grid 
stretching that should be applied and the number of grid points in the boundary zone. Often the choice is based on a 
rule of thumb from previous knowledge of the particular code used. Hence, a better understanding of the propagation 
and dissipation of waves on a stretched grid decreases the time spent on determining suitable buffer zones in a practical 
simulation.

In a series of papers Vichnevetsky et al., [19–21], analyzed the influence of grid stretching on wave propagation in one 
space dimension. The analysis is based on the discrete advection equation, where waves and wave packets are imposed as 
initial data and the discrete equation is Fourier transformed in space or in time. The conclusions from the papers can be 
summarized as follows, see [21]: a slowly and uniformly changing mesh creates no scattering as long as waves are well 
resolved, but a sharp change in a otherwise uniformly changing mesh creates scattering also for a well resolved wave. 
Hence, when a wave-like structure enters a region with a smoothly stretched grid, the reflection will be very small. Our 
experience agrees well with this conclusion. However, for wave packets the reflections due to a group velocity of opposite 
sign are of the same order as the amplitude of the wave packet, see [9,15].

In this paper, we focus on buffer zones based on pure grid stretching with a constant numerical viscosity coefficient. 
The focus of the paper is to analyze the damping mechanisms for waves in stretched grids. A main result is that damping 
from grid stretching is much more efficient than damping by dissipation when the grid stretching turns the propagating 
waves into evanescent waves. A similar result was briefly discussed in [13], but is studied in more detail in this paper. With 
this understanding, reflections of upstream waves originating from the outflow boundary can be avoided. The results of the 
analysis can in turn be used to formulate estimates on the number of cells needed in a buffer zone, for a given system and 
grid stretching ratio.

Two approaches can be taken when analyzing the effect of varying grid spacing on wave propagation. Either, the fre-
quency in time is kept constant via imposing temporally periodic boundary data. This approach leads to analysis of a discrete 
boundary value problem. The other alternative, which so far has been the most common approach, is to impose a wave as 
periodic initial data on an infinite domain, see [6,10,20]. As will be seen, the two approaches are naturally equal for the 
continuous problem when the model includes only advection. For the semi-discrete equation, however, the two approaches 
lead to different insights.

To begin with we analyze semi-discrete scalar advection and advection–diffusion equations, respectively, where time 
periodicity is imposed as boundary data in a one dimensional setting. We find that physically propagating waves turn into 
evanescent waves when the grid resolution is low. We analyze the decay rate, and a main contribution of this work is 
the conclusion that the amplitude of waves is very efficiently reduced in the evanescent regime. This type of decay is 
compared with decay due to viscous damping, and we find that evanescent decay is a much more efficient way to reduce 
the amplitude of physical waves. In many cases there are also high frequency spurious waves present, and viscous damping 
can be important for such waves. We also extend the analysis to hyperbolic systems in two space dimensions, and apply 
the results to the linearized Euler equations in an aero-acoustic setting. Important contributions in the paper are the precise 
expressions for decay of waves, which can be used for determining the thickness of buffer zones both in one and two space 
dimension. Numerical computations demonstrate the validity of the analysis.

2. Background

In the main part of this paper, we analyze the discrete solution of linear hyperbolic equations in terms of boundary 
value problems. In [20,21] as well as in [6] the discrete solutions are studied in form of an initial value problem. In order 
to compare the insights from the two approaches, we describe the initial value approach in this section for completeness.

We consider

ut + cux = 0, −∞ < x < ∞, (1)

with periodic initial data, that is

u(x,0) = e−iξx. (2)

The solution of the continuous problem is

u(x, t) = ei(ωt−ξx), (3)

where the temporal frequency ω and the spatial wave number ξ are related via the dispersion relation

ω = cξ. (4)

We discretize in space using second order accurate central differences, yielding

(v j)t + cD0 v j = 0. (5)



Download English Version:

https://daneshyari.com/en/article/4644870

Download Persian Version:

https://daneshyari.com/article/4644870

Daneshyari.com

https://daneshyari.com/en/article/4644870
https://daneshyari.com/article/4644870
https://daneshyari.com

