
Applied Numerical Mathematics 104 (2016) 62–80

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Scientific computations on multi-core systems using different 

programming frameworks

Panagiotis D. Michailidis a,∗, Konstantinos G. Margaritis b

a Department of Balkan, Slavic and Oriental Studies, University of Macedonia, 156 Egnatia Str., 54636 Thessaloniki, Greece
b Department of Applied Informatics, University of Macedonia, 156 Egnatia Str., 54636 Thessaloniki, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 7 January 2015

Keywords:
Scientific computations
Linear algebra
Parallel computing
Multi-core
Parallel programming

Numerical linear algebra is one of the most important forms of scientific computation. 
The basic computations in numerical linear algebra are matrix computations and linear 
systems solution. These computations are used as kernels in many computational problems. 
This study demonstrates the parallelisation of these scientific computations using multi-
core programming frameworks. Specifically, the frameworks examined here are Pthreads, 
OpenMP, Intel Cilk Plus, Intel TBB, SWARM, and FastFlow. A unified and exploratory 
performance evaluation and a qualitative study of these frameworks are also presented for 
parallel scientific computations with several parameters. The OpenMP and SWARM models 
produce good results running in parallel with compiler optimisation when implementing 
matrix operations at large and medium scales, whereas the remaining models do not 
perform as well for some matrix operations. The qualitative results show that the OpenMP, 
Cilk Plus, TBB, and SWARM frameworks require minimal programming effort, whereas 
the other models require advanced programming skills and experience. Finally, based on 
an extended study, general conclusions regarding the programming models and matrix 
operations for some parameters were obtained.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Scientific computing is a collection of quantitative methods and tools used to develop and solve mathematical models of 
a variety of scientific problems using a computer system [65]. Numerical linear algebra is one of the most important quan-
titative methods for scientific computing. The basic computations of numerical linear algebra are matrix computations (such 
as vector and matrix addition, dot product, outer product, matrix transpose, matrix–vector product, and matrix product) 
and solutions of linear systems (such as the direct Gaussian elimination method and the iterative Jacobi method), which 
are used as kernels in many computational problems such as computational statistics [27] and combinatorial optimisation 
[34,67,70]. To satisfy the heavy computational requirements of these methods, large-scale matrix computations use tow-
ers of software infrastructure such as BLAS/LAPACK [7], ScaLAPACK [13], and PLAPACK [69] running on cluster computing 
platforms. Recently, modern high-performance computer systems have been introduced, which can be classified into three 
categories. The first, multi-core platforms, integrate a few cores (from two to ten) on the same integrated circuit chip (die) in 
an effort to speed up execution of computationally intensive methods. The second, many-core platforms or general-purpose 
graphics processing units (GPUs), which consist of a large number of cores (as many as several hundred), are specifically 

* Corresponding author.
E-mail addresses: pmichailidis@uom.gr (P.D. Michailidis), kmarg@uom.gr (K.G. Margaritis).

http://dx.doi.org/10.1016/j.apnum.2014.12.008
0168-9274/© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:pmichailidis@uom.gr
mailto:kmarg@uom.gr
http://dx.doi.org/10.1016/j.apnum.2014.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2014.12.008&domain=pdf


P.D. Michailidis, K.G. Margaritis / Applied Numerical Mathematics 104 (2016) 62–80 63

oriented to maximizing execution throughput for parallel applications [23]. The third, reconfigurable platforms based on 
field-programmable gate arrays, are becoming important, especially when higher performance/power computation ratios are 
desired. Along with the introduction of these platforms, software projects such as Parallel Linear Algebra for Multi-core 
Architectures (PLASMA) [1] have been developed for multi-core machines and Matrix Algebra on GPU and Multicore Ar-
chitectures (MAGMA) [1] for GPU platforms. Recent comparisons of these platforms have shown substantial architectural 
and performance differences for several application areas [11,29,33,43,71]. Therefore, this paper focusses on the multi-core 
approach because it is the easiest way to speed up an application from the perspective of non-specialised developer. How-
ever, sequential implementation of linear algebra computations on a multi-core architecture will not improve performance 
because it cannot exploit the other cores that are available. Successful implementation of scientific computations on a 
multi-core machine can be achieved only through parallel (or multi-core) programming.

The fundamental programming question on a multi-core platform is how to decompose a problem into several sub-
problems and how to map these to cores with the goal of increasing performance. Moreover, programmers need to study 
and understand the hardware characteristics of the multi-core platform to write efficient parallel programs. For this reason, 
programming on multi-core processors is a more complex procedure than programming on sequential processors because 
application data in memory can be accessed by several entities called threads, which belong to the same program. For this 
reason some synchronisation between threads is necessary. Therefore, there is a need to bridge the gap between hardware 
and software applications to hide the hardware details from the programmers and enable them to write parallel programs 
with minimal programming effort. This has resulted in the introduction of several parallel programming models [23,41]
which simplify the parallelisation of linear algebra computations and other related applications on multi-core computers. 
However, these models differ significantly in their parallel design principles, abstraction levels, semantics, and syntax. Some 
popular models are POSIX threads (Pthreads for short) [18], OpenMP [68], Intel Cilk Plus [37], Intel Threading Building Blocks 
(TBB for short) [40], SoftWare and Algorithms for Running on Multi-core (SWARM for short) [9], and FastFlow [2,3]. These 
models are based on a small set of extensions to the C programming language and involve a relatively simple compilation 
phase and a potentially much more complex runtime system.

Based on the various features and qualities of programming models, the question posed by programmers becomes: what 
is the appropriate parallel programming framework for implementing linear algebra computations on a multi-core system to 
achieve a balance between high programmer productivity (i.e., minimal programming effort) and high performance? There-
fore, the contribution of this paper is a unified and systematic quantitative (i.e., performance-based) and qualitative (i.e., 
related to the ease of programming effort) comparison of all multi-core programming frameworks for implementing linear 
algebra computations based on simple parallelisation techniques. Finally, the authors believe that this work is important and 
interesting because this comparison may turn out to be very helpful for other programmers and scientists who are often 
faced with a variety of options for implementing projects.

The rest of the paper is organised as follows. In Section 2, related work is discussed. In Section 3, an abstract multi-core 
system architecture is presented along with all the reviewed parallel programming frameworks, and in Section 4, paral-
lelisation issues in implementing linear algebra computations are considered. In Section 5, a performance and qualitative 
evaluation of the reviewed parallel programming models for parallelising linear algebra operations is described. Finally, 
Section 6 presents conclusions.

2. Related work

In the research literature, several studies have evaluated various parallel programming models on multi-core platforms. 
Most of this research has compared parallel programming models from the performance point of view. However, there has 
been little related work on comparing parallel programming models from the qualitative or productivity points of view.

The research studies based on performance evaluation of different multi-core programming models can be organised into 
four groups:

1. Evaluation of a programming model to parallelise a specific problem. Research studies [50] and [52] evaluated the paral-
lelisation performance of the Gaussian elimination and LU factorisation algorithms using the OpenMP programming 
model. The parallelisation of Gaussian elimination [50] was based on the data parallel approach, whereas the parallel 
implementation of the LU decomposition [52] was based on the pipeline approach. Zuckerman et al. [72] evaluated the 
performance of the parallel matrix multiplication kernel using a high-performance M:N threading library, Microthread, 
and showed its efficiency with regard to the well-known Intel Math Kernel Library (IMKL). Runger et al. [62] presented 
a parallel optimised library for dense matrix multiplication on a multi-core platform. This implementation was based 
on a recursive approach and was compared with efficient libraries such as GotoBLAS, IMKL, and AMD Core Math Li-
brary (AMCL). Finally, Michailidis et al. [54] studied the performance of the pipeline approach in the OpenMP model 
for parallelisation of the Gauss–Jordan algorithm for solving systems of linear equations. The performance results were 
compared to the performance of two other naive parallel approaches, row block and row cyclic distribution.

2. Evaluation of a programming model to parallelise a set of problems. Michailidis et al. [53] presented performance results 
for the OpenMP model in the parallelisation of two important matrix computations, matrix–vector product and matrix 
multiplication. These parallelisations were based on a simple parallel data technique. Buttari et al. [16,17] developed the 
PLASMA library for implementing certain linear algebra operations on a multi-core platform using the title algorithms.



Download English Version:

https://daneshyari.com/en/article/4644881

Download Persian Version:

https://daneshyari.com/article/4644881

Daneshyari.com

https://daneshyari.com/en/article/4644881
https://daneshyari.com/article/4644881
https://daneshyari.com

