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In this paper we introduce an algebraic recursive multilevel incomplete factorization 
preconditioner, based on a distributed Schur complement formulation, for solving general 
linear systems. The novelty of the proposed method is to combine factorization techniques 
of both implicit and explicit types, recursive combinatorial algorithms, multilevel mecha-
nisms and overlapping strategies to maximize sparsity in the inverse factors and conse-
quently reduce the factorization costs. Numerical experiments demonstrate the good 
potential of the proposed solver to precondition effectively general linear systems, also 
against other state-of-the-art iterative solvers of both implicit and explicit form.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Krylov subspace methods may be considered the method of choice for solving large and sparse systems of linear equa-
tions arising from the discretization of (systems of) partial differential equations on modern parallel computers. This class 
of algorithms are iterative in nature. At every step k, they compute the approximate solution xk of a linear system Ax = b
from the Krylov subspace of dimension k

Kk(A,b) = span{b, Ab, A2b, . . . , Ak−1b},
according to different criteria for each given method. The computation requires matrix–vector products with the coefficient 
matrix A plus vector operations, thus potentially reducing the cumbersome costs of sparse direct solvers on large problems, 
especially in terms of memory. All of the iterative Krylov methods converge rapidly if A is somehow close to the identity. 
Therefore, it is common replacing the original system Ax = b by

M−1 Ax = M−1b, (1)

or

AM−1 y = b, x = M−1 y, (2)

for a nonsingular matrix M ≈ A. Systems (1) and (2) are referred to as left and right preconditioned systems, respectively, 
and M as the preconditioner matrix. In the case M is factorized as the product of two sparse matrices, M = M1M2, like in 
the Hermitian and positive definite case, one might solve the modified linear system

* Corresponding author.
E-mail address: bcarpentieri@gmail.com (B. Carpentieri).

http://dx.doi.org/10.1016/j.apnum.2015.12.007
0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:bcarpentieri@gmail.com
http://dx.doi.org/10.1016/j.apnum.2015.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2015.12.007&domain=pdf


142 Y. Bu et al. / Applied Numerical Mathematics 104 (2016) 141–157

M−1
1 AM−T

2 y = M−1
1 b, x = M−T

2 y. (3)

If one may choose M so that M−1 A, AM−1 or M−1
1 AM−T

2 approximate the identity, and linear systems with M or with M1
and M2 as coefficient matrices are easy to invert, it is more efficient to apply a Krylov subspace method to the modified 
linear system.

Optimal analytic preconditioners based on low order discretizations, nearby equations that are simple to solve, or sim-
ilar ideas have been proposed in the literature for specific problems. However, the problem-specific approach is generally 
sensitive to the characteristics of the underlying operator and to the details of the geometry. In this study, we pursue an al-
gebraic approach where the preconditioner M is computed only from the coefficient matrix A. Although not optimal for any 
specific problem, algebraic methods are universally applicable, they can be adapted to different operators and to changes in 
the geometry by tuning a few parameters, and are well suited for solving irregular problems defined on unstructured grids.

Roughly speaking, most of the existing techniques can be divided into either implicit or explicit form. A preconditioner 
of implicit form is defined by any nonsingular matrix M ≈ A, and requires to solve an extra linear system with M at each 
step of an iterative method. The most important example in this class is represented by the Incomplete LU decomposition 
(ILU), where M is implicitly defined as M = L̄Ū , L̄ and Ū being triangular matrices that approximate the exact L and U
factors of A according to a prescribed dropping strategy adopted during the Gaussian elimination process. These methods 
are considered amongst the most reliable in a general setting. Well known theoretical results on the existence and the 
stability of the factorization can be proved for the class of M-matrices [35], and recent studies are involving more general 
matrices, both structured and unstructured. The quality of the factorization on difficult problems can be enhanced by using 
several techniques such as reordering, scaling, diagonal shifting, pivoting and condition estimators (see e.g. [16,44,36,7,9]). As 
a result of this active development, in the last years successful results are reported with ILU-type preconditioners in many 
areas that were of exclusive domain of direct solution methods like in circuits simulation, power system networks, chemical 
engineering plants modelling, graphs and other problems not governed by PDEs, or in areas where direct methods have 
been traditionally preferred, like in structural analysis, semiconductor device modelling and computational fluid dynamics 
applications (see e.g. [41,6,1,34,43]). One problem with ILU-techniques is the severe degradation of performance observed 
on vector, parallel and GPUs machines, mainly due to the sparse triangular solves [33]. In some cases, reordering techniques 
may help to introduce nontrivial parallelism. However, parallel orderings may sometimes degrade the convergence rate, 
while more fill-in diminishes the overall parallelism of the solver [17].

Explicit preconditioning tries to mitigate such difficulties by approximating directly A−1, as the product M of sparse 
matrices, so that the preconditioning operation reduces to forming one (or more) sparse matrix–vector product, and conse-
quently the application of the preconditioner may be easier to parallelize and numerically stable. Some methods can also 
perform the construction phase in parallel [23,10,26,37,38]; additionally, on certain indefinite problems with large nonsym-
metric parts, the explicit approach can provide better results than ILU techniques (see e.g. [14,8,24]). In practice, however, 
some questions need to be addressed. The computed matrix M could be singular, and the construction cost is typically 
much higher than for ILU-type methods, especially for sequential runs. The main issue is the selection of the non-zero 
pattern of M . The idea is to keep M reasonably sparse while trying to capture the ‘large’ entries of the inverse, which are 
expected to contribute the most to the quality of the preconditioner. On general problems it is difficult to determine the 
best structure for M in advance, and the computational and storage costs required to achieve the same rate of convergence 
of preconditioners given in implicit form may be prohibitive in practice.

In this study, we present an algebraic multilevel solver for preconditioning general nonsymmetric linear systems which 
attempts to combine characteristics of both approaches. Assuming that the matrix A admits the factorization A = LU , with 
L a unit lower and U an upper triangular matrix, our method approximates the inverse factors L−1 and U−1. Sparsity in 
the approximate inverse factors is maximized by employing recursive combinatorial algorithms. Robustness is enhanced by 
combining the factorization with recently developed overlapping strategies and by using efficient local solvers.

The paper is organized as follows. In Section 2 we describe the proposed multilevel preconditioner. In Section 3 we 
show how to combine our preconditioner with overlapping strategies, and in Section 4 we assess its overall performance by 
showing several numerical experiments on realistic matrix problems, also against other state-of-the-art solvers. Finally, in 
Section 5 we conclude the study with some remarks and perspectives for future work.

2. The AMES solver

Let

Ax = b (4)

be a n ×n general linear system with nonsingular, possibly indefinite and nonsymmetric matrix A = {aij} ∈Rn×n , and vectors 
x, b ∈Rn . We assume that A admits for a triangular decomposition

A = LU

and we precondition system (4) as

ML AMU y = MLb
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