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In this work we consider optimization problems for processes described by semi-linear 
partial differential equations of elliptic type with discontinuous coefficients and solutions 
(with imperfect contact matching conditions), with controls involved in the coefficients. 
Finite difference approximations of optimization problems are constructed. For the 
numerical implementation of finite optimization problems differentiability and Lipshitz-
continuity of the grid functional of the approximating grid problems are proved. An 
iterative method for solving boundary value problems of contact for PDEs of elliptic type 
with discontinuous coefficients and solutions is developed and validated. The convergence 
of the iterative process is investigated. And the convergence rate of iterations (with 
calculated constants) is estimated.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

0. Introduction

Optimization mathematical models for systems with distributed parameters described by the equations of mathematical 
physics (PDEs) is one of the most complicated class of problems in the optimization theory, especially for nonlinear control 
problems. A special interest both for practical and theoretical points of view is related to a physical and mathematical 
formulation of optimal control problems, in which, due to a nature of a studied physical process, the states are described 
by nonlinear PDEs with discontinuous coefficients, and moreover, originally in their physical and mathematical formulation, 
solutions of PDEs admit discontinuities [9,11,8,10]. Such problems arise in the mathematical modeling and optimization 
of heat transfer, diffusion, filtration, elasticity, etc., in a study of inverse problems and of optimal control problems for 
equations of mathematical physics in multilayered media.

Before solving optimal control problems numerically, they have to be approximated by problems of a simpler nature, 
specifically, by “finite-dimensional optimization problems” (see [14]). One of the most convenient, universal, and widespread 
techniques for finite-dimensional approximation as applied to optimal control problems is the grid method [9,11,8,10]. An 
overview of works addressing the foundations of the general theory and methods of stability, the approximations of optimal 
control problems, and results obtained in this area can be found, for example, in [14,2]. Note that finite difference schemes 
for equations with discontinuous coefficients, but with continuous fluxes and solutions (with perfect-contact matching con-
dition) were constructed and examined in [9,8] for PDEs having classical solutions of some degree of smoothness. The 
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convergence of difference schemes for parabolic equations with discontinuous coefficients and solutions in classical formu-
lations with sufficiently smooth solutions was analyzed in [12,13].

In the present work, in the field related to [14,4–7], we consider nonlinear optimal control problems governed by semi-
linear elliptic equations in inhomogeneous anisotropic media with discontinuous coefficients and solutions (states) and with 
matching boundary conditions of the imperfect-contact type [9,3]. The coefficients in the right-hand side of equation are 
used as a control function. We construct and investigate finite difference approximations of optimization problems. Note 
that issues of well-posedness of the optimization problems and their approximations, convergence of the approximations 
with respect to the state and the cost functional; weak convergence of the approximations with respect to the control; and 
the regularization of the approximations using Tikhonov regularization are examined by [4,7], see Section 3 and Section 4. 
Observe also that development of efficient numerical methods for solving finite-dimensional grid optimal control problems 
is not investigated in these works.

There are two steps to solving finite-dimensional grid optimal control problems. First, we have the problem of con-
structing effective, high-precision approximate methods of solving boundary value problems for PDEs with discontinuous 
coefficients and solutions – problems for the state. In particular, we have the problem of constructing effective convergent 
iterative methods for the solution of this class of problems for PDEs, as well as the problems of development and im-
plementation of finite-dimensional approximations (see, for example, [9], [14,4–7]) of iterative problems at each iteration 
step. Development of methods for solving contact problems for PDEs with discontinuous coefficients and solutions is an 
independent and important issue.

In the present work we develop and validate an iterative method for solving grid boundary value problems of contact 
for elliptic equations with discontinuous coefficients and solutions. A convergence of the iterative process is investigated. 
The strong convergence of the iterative process to a unique solution to the difference boundary value problem is proved 
and the convergence rate of iterations (with calculated constants) is estimated. As a result, the numerical solution of these 
problems can be effectively implemented on the basis of the developed iterative method (with iterations on the inner 
boundary where the coefficients and solutions are discontinuous) in combination, for example, with the difference method 
for solving some already traditional “independent” boundary value problems arising in each contacting subdomain inside 
the composite integration domain. Note that since the developed iterative process converges strongly, and, moreover, the 
convergence properties of the approximating grid optimal control problems to the original optimization problem are proved 
in our previous articles [4,7] (see also Remark 1 of the current paper), it follows that the discrete approximate states 
(constructed by the iterative procedure) converge to the state associated to the original optimal control.

For the second step it is necessary to develop numerical algorithms for minimizing a cost functional, depending on a state 
of the system and a control. To this aim differentiability and Lipshitz-continuity of the grid functional of the approximating 
grid problems are proved in the present work. Effective procedures for calculating gradients of minimized functionals using 
the solutions of direct problems for the state and adjoint problems are obtained.

1. Formulation of optimal control problems

Let � = {
r = (r1, r2) ∈ R2 : 0 ≤ rα ≤ lα, α = 1, 2

}
be a rectangle in R2 with a boundary ∂� = �. The domain � is divided 

by the line r1 = ξ , where 0 < ξ < l1 (by the internal interface S = {
r1 = ξ, 0 ≤ r2 ≤ l2

}
, where 0 < ξ < l1) into the left �1 ≡

�− = {0 < r1 < ξ, 0 < r2 < l2} and right �2 ≡ �+ = {ξ < r1 < l1, 0 < r2 < l2} subdomains with boundaries ∂�1 ≡ ∂�− and 
∂�2 ≡ ∂�+ . Thus, � is the union of �1 and �2 and the interior points of the interface S between �1 and �2, while ∂�

is the outer boundary of �. Let �k denote the boundaries of �k without S , k = 1, 2. Therefore ∂�k = �k ∪ S , where �k , 
k = 1, 2 are open nonempty subsets of ∂�k , k = 1, 2; and �1 ∪ �2 = ∂� = �. Let nα , α = 1, 2 denote the outward normal 
to the boundary ∂�α of �α , α = 1, 2. Let n = n(x) be a unit normal to S at a point x ∈ S , directed, for example, so that n
is the outward normal on S with respect to �1; i.e., n is directed inside �2. While formulating boundary value problems 
for states of control processes below, we assume that S is a straight line across which the coefficients and solutions of the 
problems are discontinuous, while being smooth within �1 and �2.

Assume that the conditions imposed on a controlled physical process are such that it can be modeled in the domain 
� = �1 ∪ �2 ∪ S , which consists of two subdomains �1 and �2, and the separating internal boundary S , by the following 
Dirichlet problem for a semi-linear elliptic equation with discontinuous coefficients and solution: Find a function u(x), 
defined on � that satisfies in �1 and �2 the equations:

Lu(x) = −
2∑

α=1

∂

∂xα

(
kα(x)

∂u

∂xα

)
+ d(x)q(u) = f (x), x ∈ �1 ∪ �2, (1)

and the conditions

u(x) = 0, x ∈ ∂� = �1 ∪ �2,
[
k1(x)

∂u

∂x1

] = 0, G(x) = (
k1(x)

∂u

∂x1

) = θ(x2)[u], x ∈ S,

where u(x) =
{

u1(x), x ∈ �1;
u2(x), x ∈ �2,

q(ξ) =
{

q1(ξ1), ξ1 ∈ R;
q2(ξ2), ξ2 ∈ R,
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