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Microelectronic circuits usually contain small voids or cracks, and if those defects are 
large enough to sever the line, they cause an open circuit. A fully practical finite element 
method for the temporal analysis of the migration of voids in the presence of surface 
diffusion, electric loading and elastic stress is presented. We simulate a bulk–interface 
coupled system, with a moving interface governed by a fourth-order geometric evolution 
equation and a bulk where the electric potential and the displacement field are computed. 
The method presented here follows a fitted approach, since the interface grid is part 
of the boundary of the bulk grid. A detailed analysis, in terms of experimental order 
of convergence (when the exact solution to the free boundary problem is known) and 
coupling operations (e.g., smoothing/remeshing of the grids, intersection between elements 
of the two grids), is carried out. A comparison with a previously introduced unfitted
approach (where the two grids are totally independent) is also performed, along with 
several numerical simulations in order to test the accuracy of the methods.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Microelectronic circuits contain thin lines of aluminium alloy, that make electric contact between neighbouring devices 
possible. These lines are passivated with a layer of oxide at large temperatures, and during the cooling process large stresses 
are induced. As the dimensions of microchips are reduced further and further, and since interconnects always contain 
small voids or cracks, it is of great interest to investigate the physical mechanisms that impede such a reduction, due to 
mechanical failures in the lines induced by the motion of the cracks. The problem analysed in this paper involves the 
evolution over time of voids in a conducting metal line where three different contributions to the drift of the voids are 
present: the surface tension, the electric field and the elastic energy. This phenomenon is known as electro-stress migration; 
for further details see, e.g., [36,14,3], and the references therein.

As the height of interconnect lines is much smaller than the dimensions of the base, voids generally fully penetrate 
the conducting material. Hence it is common to consider a two dimensional model for void electro-stress migration, and 
this is the approach that we are going to pursue in this paper. In addition, for ease of exposition, we assume that the 
interconnect line is given by a rectangular solid. The electric field is induced in the line by prescribing the voltage on its 
vertical boundaries, while the displacement field is induced by prescribing the stresses on its four boundaries.
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Fig. 1. The domain � and the void with its boundary �(t).

In this paper, based on our previous work in [31], we introduce a novel front-tracking, fitted finite element method for 
the approximation of void electro-stress migration. The main difference to the approximation presented in [31] is that here 
we consider the fitted approach, which means that the interface mesh is always part of the boundary of the bulk grid. 
Moreover, we also include the effect of stress-migration into the model. As an aside we note that our method inherits 
the good interface mesh properties from the approximation in [31]. In particular, the vertices on the discrete interface 
equidistribute asymptotically so that no reparameterisation of the discrete interface is necessary in practice.

The paper is organised as follows. In Section 2 we give a mathematical description of the problem of void electro-stress 
migration that we are interested in. We also give a brief overview of the different numerical methods applicable to this 
problem. In addition, we highlight the differences between the fitted approach presented in this paper and the unfitted 
approach previously introduced by the authors in [31]. Section 3 contains a detailed description of our proposed finite 
element approximation. In Section 4 we discuss possible solution methods of the algebraic system of equations arising at 
each time level. In addition, we present details on the bulk mesh smoothing strategy. Finally, in Section 5 we perform a 
convergence experiment for a test case in which the exact solution is known, and we present various other examples of the 
application of our numerical method.

2. Problem formulation

For the formulation of the governing equations we closely follow the presentation in [31], see also [3]. Let � =
(−L1, L1) × (−L2, L2), where L1, L2 > 0, be the domain that contains the conductor. We denote the boundary of � with ∂�. 
At any time t ∈ [0, T ], let �(t) ⊂ � be the boundary of the void �−(t) inside the conductor �. Then �(t) = ∂�−(t) and 
�+(t) := � \ �−(t) denotes the conducting region (see Fig. 1). Now the evolution of the interface �(t), which represents 
the void boundary, is given by

V = −α1 �ss + α2 φss + α3 (E (�u))ss, (1)

where V represents the velocity of �(t) in the direction �ν (the unit normal to �(t) pointing into �−(t)), s is the arc-length 
of the curve, � is the curvature of �(t) (positive when �−(t) is convex). In particular, it holds that

�xss = � �ν , (2)

where �x is a suitable parameterisation of �(t), i.e. �(t) = �x (I, t), with I = R /Z denoting the “periodic” interval [0, 1].
The second contribution on the right-hand side of (1) is given by the electric potential φ(t), which satisfies a Laplace 

equation in �+(t), i.e.:

�φ = 0 in �+(t) ,
∂φ

∂ �ν = 0 on �(t) , (3a)

∂φ

∂ �ν∂�

= 0 on ∂1�, φ = g± on ∂±
2 �, (3b)

where �ν∂� is the outer normal to ∂�. In (3b), g± := ± L1 denotes the Dirichlet boundary condition on parts of ∂�, where 
∂� = ∂1� ∪ ∂2�, with ∂1� ∩ ∂2� = ∅ and

∂2� = ∂−
2 � ∪ ∂+

2 � with ∂±
2 � := {±L1} × [−L2, L2].

The Dirichlet boundary conditions in (3b) model a uniform parallel electric field, φ ≈ x1 as L1 → ∞.
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