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An advantageous feature of piecewise constant policy timestepping for Hamilton–Jacobi–
Bellman (HJB) equations is that different linear approximation schemes, and indeed differ-
ent meshes, can be used for the resulting linear equations for different control parameters. 
Standard convergence analysis suggests that monotone (i.e., linear) interpolation must be 
used to transfer data between meshes. Using the equivalence to a switching system and 
an adaptation of the usual arguments based on consistency, stability and monotonicity, 
we show that if limited, potentially higher order interpolation is used for the mesh trans-
fer, convergence is guaranteed. We provide numerical tests for the mean-variance optimal 
investment problem and the uncertain volatility option pricing model, and compare the 
results to published test cases.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

This article is concerned with the numerical approximation of fully nonlinear second order partial differential equations 
of the form

0 = F (x, V , D V , D2 V ) =
{

Vτ − supq∈Q Lq V , x ∈R
d × (0, T ],

V (x) − G(x), x ∈R
d × {0}, (1.1)

where x = (S, τ ) contains both ‘spatial’ coordinates S ∈ R
d and backwards time τ . For fixed q in a control set Q , Lq is the 

linear differential operator

Lq V = tr
(
σqσ

T
q D2 V

) + μT
q D V − rq V + fq, (1.2)

where σq ∈R
d×d , μq ∈R

d and rq, fq ∈R are functions of the control as well as possibly of x. An initial (in backwards time) 
condition V (0, ·) = G(·) is also specified.

These equations arise naturally from stochastic optimization problems. By dynamic programming, the value function sat-
isfies an HJB equation of the form (1.1). Since dynamic programming works backwards in time from a terminal time T to 
today t = 0, it is conventional to write PDE (1.1) in terms of backwards time τ = T − t , with T being the terminal time, and 
t being forward time.

* Corresponding author.
E-mail addresses: reisinge@maths.ox.ac.uk (C. Reisinger), paforsyt@uwaterloo.ca (P.A. Forsyth).

http://dx.doi.org/10.1016/j.apnum.2016.01.001
0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:reisinge@maths.ox.ac.uk
mailto:paforsyt@uwaterloo.ca
http://dx.doi.org/10.1016/j.apnum.2016.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2016.01.001&domain=pdf


28 C. Reisinger, P.A. Forsyth / Applied Numerical Mathematics 103 (2016) 27–47

Many examples of equations of the type (1.1) are found in financial mathematics, including the following: optimal in-
vestment problems [32]; transaction cost problems [17]; optimal trade execution problems [1]; values of American options 
[25]; models for financial derivatives under uncertain volatilities [2,30]; utility indifference pricing of financial derivatives 
[15]. More recently, enhanced oversight of the financial system has resulted in reporting requirements which include Credit 
Value Adjustment (CVA) and Funding Value Adjustment (FVA), which lead to nonlinear control problems of the form (1.1)
[12,31,13].

If the solution has sufficient regularity, specifically for Cordes coefficients, it has recently been demonstrated that higher 
order discontinuous Galerkin solutions are possible [36]. Generally, however, these problems have solutions only in the 
viscosity sense of [16].

A general framework for the convergence analysis of discretization schemes for strongly nonlinear degenerate elliptic 
equations of type (1.1) is introduced in [7], and has since been refined to give error bounds and convergence orders, see, 
e.g., [4–6]. The key requirements that ensure convergence are consistency, stability and monotonicity of the discretization.

The standard approach to solve (1.1) by finite difference schemes is to “discretize, then optimize”, i.e., to discretize the 
derivatives in (1.2) and to solve the resulting finite-dimensional control problem. The nonlinear discretized equations are 
then often solved using variants of policy iteration [20], also known as Howard’s algorithm and equivalent to Newton’s 
iteration under common conditions [9].

At each step of policy iteration, it is necessary to find the globally optimal policy (control) at each computational node. 
The PDE coefficients may be sufficiently complicated functions of the control variable q such that the global optimum cannot 
be found either analytically or by standard optimization algorithms. Then, often the only way to guarantee convergence of 
the algorithm is to discretize the admissible control set and determine the optimal control at each node by exhaustive 
search, i.e., Q is approximated by finite subset Q H = {q1, . . .q J } ⊂ Q . This step is the most computationally time intensive 
part of the entire algorithm. Convergence to the exact solution is obtained by refining Q H .

Of course, in many practical problems, the admissible set is known to be of bang–bang type, i.e., the optimal controls are 
a finite subset of the admissible set. Then the true admissible set is already a discrete set of the form Q H .

In both cases, if we use backward Euler timestepping, an approximation to V n+1 at time τn+1 is obtained from

V n+1 − V n

�τ
− max

q j∈Q H

Lh
q j

V n+1 = 0, (1.3)

where we have a spatial discretization Lh
q j

, with h a mesh size and �τ the timestep.

1.1. Objectives

It is our experience that many industrial practitioners find it difficult and time consuming to implement a solution 
of equation (1.3). As pointed out in [34], many plausible discretization schemes for HJB equations can generate incorrect 
solutions. Ensuring that the discrete equations are monotone, especially if accurate central differencing as much as possible
schemes are used, is non-trivial [38]. Policy iteration is known to converge when the underlying discretization operator for 
a fixed control is monotone (i.e., an M-matrix) [9]. Seemingly innocent approximations may violate the M-matrix condition, 
and cause the policy iteration to fail to converge.

A convergent iterative scheme for a finite element approximation with quasi-optimal convergence rate to the solution 
of a strictly elliptic switching system is proposed and analyzed in [10]. Here, we are concerned with parabolic equations 
and exploit the fact that approximations of the continuous-time control processes by those piecewise constant in time and 
attaining only a discrete set of values, lead to accurate approximations of the value function.

A technique which seems to be not commonly used (at least in the finance community) is based on piecewise constant 
policy time stepping (PCPT) [28,6]. In this method, given a discrete control set Q H = {q1, . . .q J }, J independent PDEs are 
solved at each timestep. Each of the J PDEs has a constant control q j . At the end of the timestep, the maximum value at 
each computational node is determined, and this value is the initial value for all J PDEs at the next step.

Convergence of an approximation in the timestep has been analyzed in [27] using purely probabilistic techniques, which 
shows that under mild regularity assumptions a convergence order of 1/6 in the timestep can be proven. In this and other 
works [26,28], applications to fully discrete schemes are given and their convergence is deduced. These estimates seem 
somewhat pessimistic, in that we typically observe (experimentally) first order convergence.

Note that this technique has the following advantages:

• No policy iteration is required.
• Each of the J PDEs has a constant policy, and hence it is straightforward to guarantee a monotone, unconditionally 

stable discretization.
• Since the PCPT algorithm reduces the solution of a nonlinear HJB equation to the solution of a sequence of linear PDEs 

(at each timestep), followed by a simple max or min operation, it is straightforward to extend existing (linear) PDE 
software to handle the HJB case.

• Each of the J PDEs can be advanced in time independently. Hence this algorithm is an ideal candidate for efficient 
parallel implementation.
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