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In this paper we propose a new iterative numerical method for initial value problems of 
first and second order involving retarded argument. The method uses a quadratic spline 
interpolation procedure activated at each iterative step. The convergence of this method of 
iterated splines is theoretically proven and tested on some numerical examples.
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1. Introduction

In this paper we construct a new iterative numerical method in order to approximate the solution of initial value prob-
lems for first and second order differential equations with retarded argument. The existing numerical methods proposed for 
initial value problems associated to first and second order ordinary differential equations and differential equations with re-
tarded argument are based on: Runge–Kutta procedures (see [1,2,16,29,34,38]), Nyström techniques (see [18]), power series 
(see [33] and [39]), iterative analytic-numeric methods like variational iteration, Adomian decomposition, and homotopy 
perturbation (see [9,17,31,40]), collocation methods (see [5,7,13,14,32]), Adams procedures and divided differences (see [19]
and [23]), Birkhoff interpolation (see [11]), rational approximation (see [21]), spline functions methods (see [7,27,30,15]), 
B-spline scaling functions (see [24]), quadrature collocation based on local radial basis functions (see [12]), pseudospectral 
tau and Lanczos methods (see [36]). The method of successive interpolations based on Birkhoff cubic splines with deficiency 
3 is presented in [4] for second order functional differential equations. In [3] the method of successive interpolations uses 
natural cubic splines for the numerical solution of first order functional differential equations. In [26] and [25] the use of 
quadratic splines was involved in the spline functions method applied to first order ODEs.

The proposed numerical method developed here is based on quadratic splines and will be applied to the following kind 
of initial value problems:{

x′ (t) = f (t, x (t) , x (ϕ (t))) , t ∈ [a,b]
x (a) = x0

(1)
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and {
x′′ (t) = f (t, x (t) , x (ϕ (t))) , t ∈ [a,b]

x (a) = x0, x′ (a) = x′
0

(2)

where f ∈ C([a, b] ×R ×R) and ϕ ∈ C[a, b] with a ≤ ϕ (t) ≤ t , for all t ∈ [a, b]. This method combines the Picard’s iterative 
technique with a quadratic spline interpolation procedure applied in each iterative step. As a particular case we mention 
the well-known nonlinear pantograph equation with vanishing retarded argument ϕ (t) = βt , β ∈ (0,1):{

x′ (t) = f (t, x (t) , x (βt)) , t ∈ [a,b]
x (a) = x0.

(3)

The classical linear pantograph equation x′ (t) = A · x (t) + B · x (βt) appears in [28], modelling current collection by electric 
locomotive’s pantograph. The equation is studied in [31,36], and [40], the numerical methods being developed for the ap-
proximate solution using variational iteration, pseudospectral Lanczos methods with Chebyshev polynomials, and homotopy 
perturbation, respectively.

The well-known performances of the existing numerical methods (such as continuous Runge–Kutta, collocation, spline 
functions methods, and polynomial expansions like: Adomian decomposition, variational iteration, homotopy perturbation, 
power series, series of orthogonal polynomials) for initial value problems associated to functional differential equations 
are widely disseminated in a rich literature (see [1,2,5,6,25,27,34], and references therein). In addition to this, we develop 
in this paper the new method of iterated splines based on Picard’s technique of successive approximations and applying in 
each iterative step suitable quadrature rules and spline interpolation procedures. Our intention is to show that such iterative 
numerical method could be effective when the quadrature rule and the spline are adequately chosen. The paper is organized 
as follows: in Section 2 we present the convergence properties of the quadratic spline interpolation procedure and the 
construction of the proposed iterative algorithm. The convergence of the proposed numerical method is proven in Section 3
and it is tested on some numerical experiments in Section 4. In Section 3 we introduce a new type of numerical stability 
that is appropriate for iterative methods, namely the numerical stability with respect to the choice of the first iteration. For 
this it is proven that the proposed numerical method is numerically stable. The presented numerical experiments confirm 
the numerical stability. Some concluding remarks are pointed out in Section 5.

2. The quadratic splines and the iterative algorithm

In [37] it is proposed a quadratic spline for interpolating given values y0, y1, . . . , yn on a set of corresponding knots 
x0, x1, . . . , xn ∈ [a, b], with a = x0 < x1 < . . . < xn−1 < xn = b. This quadratic spline s : [a, b] → R, s ∈ C1[a, b] is generated 
by the interpolation conditions s (xi) = yi , i = 0,n, s′ (x0) = m0, and has the restrictions si , to the subintervals [xi−1, xi], 
i = 1,n:

si (x) = mi − mi−1

2hi
· (x − xi−1)

2 + mi−1 · (x − xi−1) + yi−1, ∀x ∈ [xi−1, xi], ∀i = 1,n (4)

where hi = xi − xi−1, i = 1,n. The smoothness conditions s ∈ C[a, b], s ∈ C1[a, b] lead to si (xi) = yi , ∀i = 1,n. It is easy to 
see that s′

i (xi−1) = mi−1, s′
i (xi) = mi , ∀i = 1,n, and by the conditions si (xi) = yi , i = 1,n, we get the relations:

yi − yi−1 = (mi − mi−1) · hi

2
+ mi−1hi

which can be written in the recurrent form:

mi = 2

hi
· (yi − yi−1) − mi−1, ∀i = 1,n. (5)

Therefore we infer that the values y0, y1, . . . , yn and m0 uniquely determine the C1 smooth quadratic spline interpolating 
the values yi , i = 0,n. In the case that yi = f (xi), i = 0,n, for f : [a, b] → R, we can say that s interpolates f on the 
knots xi , i = 0,n. With respect to error estimation of this interpolation, in [37] error estimates for the cases f ∈ C3[a, b] and 
f ∈ C4[a, b] in the context of uniform grids are obtained. Here we derive the error estimates in the cases of lower smooth 
functions for arbitrary grids.

Theorem 1. (i) If f : [a, b] → R is a continuous function such that f (xi) = yi , ∀i = 0,n and if s : [a, b] −→ R, s ∈ C1[a, b] is the 
quadratic spline interpolating f , then for any choice of the value m0 the error estimate is:

|s (x) − f (x)| ≤
(

1 + h

h

)
· ω( f ,h) + O

(
h2

)
, ∀x ∈ [a,b] (6)

where h = max{hi : i = 1,n}, h = min{hi : i = 1,n}, and

ω( f ,h) = sup{∣∣ f (x) − f
(
x′)∣∣ : x, x′ ∈ [a,b], ∣∣x − x′∣∣ ≤ h}
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