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This paper proposes and analyzes an a posteriori error estimator for the finite element 
multi-scale discretization approximation of the Steklov eigenvalue problem. Based on the 
a posteriori error estimates, an adaptive algorithm of shifted inverse iteration type is 
designed. Finally, numerical experiments comparing the performances of three kinds of 
different adaptive algorithms are provided, which illustrate the efficiency of the adaptive 
algorithm proposed here.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In recent years, numerical methods for Steklov eigenvalue problems have attracted more and more scholars’ attention 
(see, e.g., [3–6,9,13,21,26–28,31,36,40,41]). It is well known that in the numerical approximation of partial differential equa-
tions, the adaptive procedures based on a posteriori error estimates, due to the less computational cost and time, are the 
mainstream direction and have gained an enormous importance. The aim of this paper is to propose and analyze an a 
posteriori error estimator for the finite element multi-scale discretization approximation of the Steklov eigenvalue problem, 
based on which an adaptive algorithm is designed.

As for eigenvalue problems, till now, there are basically three ways to design adaptive algorithms as follows in which the 
a posterior error estimators are more or less the same but the equations solved in each iteration are different: I. Solve the 
original eigenvalue problem at each iteration. The convergence and optimality of this adaptive procedure have been stud-
ied in [18,19,21]. II. Inverse iteration type. [14,17,32,34,35,38] have studied and obtained the convergence of this method. 
III. Shifted inverse iteration type (see [23,30,42]). This paper studies the third type of adaptive method for the Steklov 
eigenvalue problem, and the special features are:

(1) As for the Steklov eigenvalue problem, so far, it has been discussed the first type of adaptive method of combining 
the a posteriori error estimates and adaptivity (see [21] or Algorithm 4.1 in this paper). As far as our information goes, 
there has not been any report on the other two kinds of adaptive methods. This paper designs the third type of adaptive 
algorithm based on the a posterior error estimates (see Algorithm 4.3 in this paper). Here we propose an a posteriori error 
estimator of residual type and give not only the global upper bound but also the local lower bound of the error which is 
important for the adaptive procedure.
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(2) [30] established and analyzed the a posteriori error estimates of the multi-scale discretization scheme for second 
order self-adjoint elliptic eigenvalue problems with homogeneous Dirichlet boundary value condition by means of the a 
posteriori error estimates of the associated boundary value problem and left the local lower bound of the error unproved, 
while this paper studies the a posteriori error estimates of the multi-scale discretization scheme by using the a posteriori 
error estimates of finite element eigenfunctions directly, and obtains the local lower bound of the error.

(3) Numerical experiments comparing the performances of three kinds of different adaptive methods mentioned above 
are provided. It can be seen from the numerical results that the adaptive algorithm of shifted inverse iteration type has 
advantages over the other two kinds. More precisely, comparing with the first type, to achieve the same accurate approxi-
mation, our method uses less computational time; and our adaptive algorithm can be used to seek efficiently approximations 
of any eigenpair of the Steklov eigenvalue problem, however, the algorithm of the second type (see Algorithm 4.2 in this 
paper) is only suitable to the smallest eigenvalue.

The rest of this paper is organized as follows. In section 2, some preliminaries needed in this paper are introduced. In 
section 3, a multi-scale discretization scheme is presented, and its a priori and a posteriori error estimates are given and 
analyzed, respectively. In section 4, three kinds of adaptive algorithms for the Steklov eigenvalue problem are presented, 
and finally numerical experiments are provided which illustrate the advantages of our algorithm.

2. Preliminaries

Let Ht(�) and Ht(∂�) denote Sobolev spaces on � and ∂� with real order t , respectively. The norm in Ht(�) and 
Ht(∂�) are denoted by ‖ · ‖t and ‖ · ‖t,∂� , respectively. H0(∂�) = L2(∂�).

In this paper, we will write a � b to indicate that a � Cb with C > 0 being a constant depending on the data of the 
problem but independent of meshes generated by the adaptive algorithm.

We consider the following Steklov eigenvalue problem

−�u + u = 0 in �,
∂u

∂n
= λu on ∂�, (2.1)

where � ⊂R
2 is a polygonal domain with θ being the largest inner angle of � and ∂u

∂n is the outward normal derivative.
The weak form of (2.1) is given by: find λ ∈ R, u ∈ H1(�) with ‖u‖1 = 1, such that

a(u, v) = λb(u, v), ∀v ∈ H1(�), (2.2)

where

a(u, v) =
∫
�

∇u · ∇v + uvdx, b(u, v) =
∫
∂�

uvds,

‖u‖b = b(u, u)
1
2 = ‖u‖0,∂�.

It is easy to know that a(·, ·) is a symmetric, continuous and H1(�)-elliptic bilinear form on H1(�) × H1(�). So, we use 
a(·, ·) and ‖ · ‖a = √

a(·, ·) = ‖ · ‖1 as the inner product and norm on H1(�), respectively.
Let {πh} be a family of regular triangulations of � with the mesh diameter h, and Vh ⊂ C(�) be a space of piecewise 

linear polynomials defined on πh .
The conforming finite element approximation of (2.2) is: find λh ∈ R, uh ∈ Vh with ‖uh‖a = 1, such that

a(uh, v) = λhb(uh, v), ∀v ∈ Vh. (2.3)

Consider the following source problem (2.4) associated with (2.2) and the approximate source problem (2.5) associated 
with (2.3), respectively.

Find w ∈ H1(�), such that

a(w, v) = b( f , v), ∀v ∈ H1(�). (2.4)

Find wh ∈ Vh , such that

a(wh, v) = b( f , v), ∀v ∈ Vh. (2.5)

From [20] we know that the following regularity estimates hold for (2.4).

Lemma 2.1. If f ∈ L2(∂�), then there exists a unique solution w ∈ H1+ r
2 (�) to (2.4), and

‖w‖1+ r
2
� ‖ f ‖0,∂�; (2.6)

if f ∈ H
1
2 (∂�), then there exists a unique solution w ∈ H1+r(�) to (2.4), and
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