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A general local Fourier analysis for overlapping block smoothers on triangular grids is 
presented. This analysis is explained in a general form for its application to problems with 
different discretizations. This tool is demonstrated for two different problems: a stabilized 
linear finite element discretization of Stokes equations and an edge-based discretization 
of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, 
special Fourier modes have to be considered in order to perform the analysis. Numerical 
results comparing two- and three-grid convergence factors predicted by the local Fourier 
analysis to real asymptotic convergence factors are presented to confirm the predictions of 
the analysis and show their usefulness.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

As is well-known, multigrid methods [3,11] are among the most powerful techniques for the efficient resolution of 
the large systems of equations arising from the discretization of partial differential equations. Since the 70’s, when these 
methods were developed, they have become very popular among the scientific community. They have the nice property 
of requiring a computational work of the order of the number of unknowns of the problem, at least for elliptic problems. 
Besides, they have also been applied to more complicated problems, for example see [30], providing very good results.

The efficiency and the robustness of a multigrid method is essentially influenced by the smoothing algorithm. We want 
to study the class of multiplicative Schwarz smoothers. Basically, they can be described as an overlapping block Gauss–Seidel 
method, where a small linear system of equations for each grid point has to be solved in each smoothing step. This type 
of smoothers is characterized by its ability to deal with saddle point problems and equations where the terms grad–div or 
curl–curl dominate. A particular case of such relaxation is the so-called Vanka smoother, introduced in [32] for solving the 
staggered finite difference discretization of the Navier–Stokes equations.

Local Fourier analysis (LFA, or local mode analysis) is a commonly used approach for analyzing the convergence proper-
ties of geometric multigrid methods. In this analysis an infinite regular grid is considered and boundary conditions are not 
taken into account. LFA was introduced by Brandt in [3] and afterward extended in [4]. A good introduction can be found 
in the paper by Stüben and Trottenberg [29] and in the books by Wesseling [33], Trottenberg et al. [30], and Wienands 
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and Joppich [34]. LFA was generalized to triangular grids in [7], for discretizations based on linear finite element methods. 
Afterwards, this generalization has been extended to systems of partial differential equations [8,9] and to high-order finite 
element discretizations [25].

To our knowledge, there are only few papers dealing with local Fourier analysis for overlapping smoothers, all of them for 
discretizations on rectangular grids. This analysis was performed in [28] for the staggered finite-difference discretizations 
of the Stokes equations, and in [22] for a mixed finite element discretization of the Laplace equation. In [2], an LFA to 
analyze an additive Schwarz smoother for a curl–curl model problem is proposed. A multicolored version was considered 
in the way that the corresponding analysis does not consider the special techniques to study the standard overlapping 
smoothers. In [24] an LFA for overlapping block smoothers on triangular grids is presented. This tool was applied to linear 
finite element discretizations for poroelasticity problems. Later, in [20], the analysis for such overlapping block smoothers 
is performed on rectangular grids for finite element discretizations of the grad–div, curl–curl and Stokes equations. Here, 
we present and extend this analysis to general discretizations on triangular grids, including some special techniques for 
the case of edge-based discretizations. Two model problems are chosen to show this analysis, but we keep in mind that 
it can be carried over to a variety of other problems and other overlapping smoothers. The considered problems are the 
discretization by stabilized linear finite elements of the Stokes problem, and the low-order Nédélec’s edge elements for the 
curl–curl equation. Regarding the Stokes system, we perform an exhaustive two-grid local Fourier analysis for the full- and 
diagonal (much cheaper) versions of the overlapping block smoother. Apart from this, also a three-grid analysis is developed 
in order to obtain more insight. This analysis has to deal with the difficulties inherent to the treatment of this kind of 
smoothers and also it has to take into account the corresponding extension of LFA to triangular grids. Apart from these 
difficulties, for the second model problem we need to extend this analysis to edge-based discretizations on which different 
stencils appear depending on the type of edge. This makes necessary the introduction of special Fourier modes in order to 
perform the analysis. Also for this test we perform a two- and three-grid LFA to analyze the differences in the performance 
of W- and V-cycles.

The structure of the paper is as follows. In Section 2, a general description of the class of overlapping block smoothers 
is done, together with the development of a suitable local Fourier analysis for this type of relaxation procedures. Two- and 
three-grid local Fourier analysis are performed. Sections 3 and 4 are focused on a detailed description of the local Fourier 
analysis of two particular overlapping block smoothers for the solution of two different model problems. More concretely, 
in Section 3 a stabilized linear finite element discretization of the Stokes equations is considered and in Section 4 we deal 
with an edge-based discretization of a curl–curl problem by using low order Nédélec finite elements. Finally, in Section 5
some conclusions are drawn.

2. Local Fourier analysis for overlapping block smoothers

2.1. Description of the smoother

Point-wise iterative methods can be generalized to block-wise iterative schemes by updating a set of unknowns at each 
time, instead of only one. To this end, the grid is split into blocks and the equations corresponding to the grid-points in each 
block are simultaneously solved as a system of equations. Block-wise schemes become very attractive when anisotropies 
appear, especially when they are combined with a problem-dependent ordering of the blocks, since point-wise relaxation 
techniques lose their smoothing property. Many arbitrary splittings of the mesh can be considered. For example, it is possible 
to allow the blocks to overlap, what gives rise to the class of overlapping block iterations, where smaller local problems are 
solved and combined via a multiplicative Schwarz method. They were introduced by Vanka in [32], and in [27] a theoretical 
basis for this approach was provided. These smoothers, also known as coupled or box-relaxation, consist of decomposing 
the mesh into small subdomains and treating them separately. Therefore, one relaxation step consists of a loop over all 
subdomains, solving for each one the system arising from the corresponding equations. Next, we give a more detailed 
description of the iterative method. We consider a linear system of equations Ah uh = fh , which, in our case, arises from 
the discretization of a PDE problem. Vector uh is composed of unknowns corresponding to m different variables. More 
concretely, Ni unknowns of each variable i are considered. Let B be the subset of unknowns involved in an arbitrary block, 
that is, B = {u1

k1(1)
, . . . , u1

k1(n1)
, . . . , um

km(1)
, . . . , um

km(nm)
}, where ki(1), . . . , ki(ni) are the global indexes of the ni unknowns 

corresponding to variable i. In order to obtain the matrix AB
h of the system to solve associated with block B , we introduce 

the matrix V B representing the projection operator from the vector of all unknowns to the vector of the unknowns involved 
in the block, as the following block-diagonal matrix

V B =
⎛⎜⎝ V 1

B
. . .

V m
B

⎞⎟⎠ . (1)

Here, each block V i
B is a (ni × Ni)-matrix, whose jth-row is the ki( j)th-row of the identity matrix of order Ni . In this way, 

matrix AB
h can be defined as

AB
h = V B Ah V T

B . (2)
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