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We consider the stationary Stokes equations under a unilateral boundary condition of 
Signorini’s type, which is one of artificial boundary conditions in flow problems. Well-
posedness is discussed through its variational inequality formulation. We also consider 
the finite element approximation for a regularized penalty problem. The well-posedness, 
stability and error estimates of optimal order are established. The lack of a coupled 
Babuška and Brezzi’s condition makes analysis difficult. We offer a new method of analysis. 
Particularly, our device to treat the pressure is novel and of some interest. Numerical 
examples are presented to validate our theoretical results.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We suppose that � is a bounded domain in Rd with d = 2, 3 and that the boundary ∂� is comprised of three parts S1, 
S2 and �. Those S1, S2 and � are assumed to be smooth but the whole boundary ∂� is not necessarily smooth. One might 
imagine a branched pipe resembling that depicted in Fig. 1. The first purpose of this paper is to study the well-posedness 
of the following unilateral boundary value problem for the Stokes equations

− ν�u + ∇p = f , ∇ · u = 0 in �, (1a)

u = 0 on S1 ∪ S2, (1b)

un + gn ≥ 0, on �, (1c)

τn(u, p) + αn ≥ 0 on �, (1d)

(un + gn)(τn(u, p) + αn) = 0 on �, (1e)

τT (u) + αT = 0 on � (1f)

for velocity u = (u1, . . . , ud) and pressure p with density ρ = 1 and kinematic viscosity ν of the viscous incompressible 
fluid under consideration. Therein,

τ (u, p) = σ(u, p)n
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Fig. 1. Example of � (branched pipe).

denotes the traction vector on ∂�, where n is the outward normal vector to ∂�, σ(u, p) = (σi j(u, p))1≤i, j≤d = −pI +
2νD(u) the stress tensor, D(u) = (Dij(u))1≤i, j≤d = 1

2

(∇u + ∇uT
)

the deformation-rate tensor and I the identity matrix. For 
a vector-valued function v on ∂�, its normal and tangential components are denoted, respectively, as

vn = v · n, v T = v − vnn.

Particularly, τn(u, p) = τ (u, p) ·n and τT (u) = τ (u, p) − τn(u, p)n respectively denote normal and tangential traction vectors. 
Moreover, f , g and α are prescribed functions. We also consider the finite element approximation for a regularized penalty 
problem to (1) which is given as

− ν�u + ∇p = f , ∇ · u = 0 in �, (2a)

u = 0 on S1 ∪ S2, (2b)

τn(u, p) + αn = 1

ε
φδ(un + gn) on �, (2c)

τT (u) + αT = 0 on � (2d)

with 0 < ε � 1 and 0 < δ � 1. Therein, φδ(s) is a C1 regularization of [s]− = max{0, −s}. We can take, for example,

φδ(s) =
{

0 (s ≥ 0)

(
√

s2 + δ2 − δ) (s < 0).
(3)

First, we explain our motivation for studying (1) and (2). In numerical simulation of real-world flow problems, we often 
encounter some issues related to artificial boundary conditions. A typical and important example is the blood flow problem 
in the large arteries, where the blood is assumed to be a viscous incompressible fluid (see [17,32]). The blood vessel is 
modeled as a branched pipe as illustrated, for example, in Fig. 1. Then, for T > 0, we consider the Navier–Stokes equations 
for velocity v = (v1, . . . , vd) and pressure q,

vt + (v · ∇)v = ∇ · σ(v,q) + f , ∇ · v = 0 in � × (0, T ), (4a)

v = b on S1 × (0, T ), (4b)

v = 0 on S2 × (0, T ) (4c)

with the initial condition v|t=0 = v0. We are able to give a velocity profile b = b(x, t) at the inflow boundary S1. The flow is 
presumed to be a perfect non-slip flow on the wall S2. Then, the blood flow simulation is highly dependent on the choice 
of artificial boundary conditions posed on the outflow boundary �.

An earlier paper by Zhou and Saito [34] presented discussion of the free-traction condition

τ (v,q) = 0 on �, (5)

which is one of the common outflow boundary conditions (see [19,22]), and some nonlinear energy-preserving boundary 
conditions (see [3,7,8,11,12]) from the view-point of energy inequality. Moreover, we proposed a new outflow boundary 
condition as

vn ≥ 0, τn(v,q) ≥ 0, vnτn(v,q) = 0, τT (v) = 0 on �. (6)

This is an analogy to Signorini’s condition in the theory of elasticity (see [24]). It is indeed a generalization of the free-
traction condition (5), as
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