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posedness is discussed through its variational inequality formulation. We also consider
the finite element approximation for a regularized penalty problem. The well-posedness,
stability and error estimates of optimal order are established. The lack of a coupled
Babuska and Brezzi’s condition makes analysis difficult. We offer a new method of analysis.

Keywords:

Stokes equations Particularly, our device to treat the pressure is novel and of some interest. Numerical
Finite element approximation examples are presented to validate our theoretical results.

Unilateral boundary condition © 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We suppose that € is a bounded domain in R? with d =2, 3 and that the boundary 92 is comprised of three parts Si,
Sy and I'. Those S1, S and T are assumed to be smooth but the whole boundary 92 is not necessarily smooth. One might
imagine a branched pipe resembling that depicted in Fig. 1. The first purpose of this paper is to study the well-posedness
of the following unilateral boundary value problem for the Stokes equations

—VAu+Vp=f, V-u=0 in Q, (1a)
u=0 onS{US>y, (1b)
Up + g >0, onTl, (1c)
(U, p)+on >0 onT, (1d)
(un + gn)(Ta(u, p) +on) =0 onl, (le)
T(u) +oar=0 onI" (1f)
for velocity u = (u1,...,uq) and pressure p with density p =1 and kinematic viscosity v of the viscous incompressible

fluid under consideration. Therein,

T(u, p) =0 (u, p)n
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Fig. 1. Example of Q (branched pipe).

denotes the traction vector on 9<2, where n is the outward normal vector to 9%, o (u, p) = (04U, pP))1<i,j<d = —PI +

2vD(u) the stress tensor, D(u) = (Djj(W)1<i, j<d = % (Vu + VuT) the deformation-rate tensor and I the identity matrix. For
a vector-valued function v on 92, its normal and tangential components are denoted, respectively, as

Vp=V-n, Vr=V— VN

Particularly, t,(u, p) =t(u, p)-n and 77 (u) = t(u, p) — T (u, p)n respectively denote normal and tangential traction vectors.
Moreover, f, g and « are prescribed functions. We also consider the finite element approximation for a regularized penalty
problem to (1) which is given as

—VvAu+Vp=f, V.-u=0 in Q, (2a)

u=20 onS1US>y, (2b)
1

Tn(U. p) +an = —~¢5(Un + gn) onT, (20)

Tr(u) +or =0 onTl (2d)

with 0 <& « 1 and 0 < § « 1. Therein, ¢;5(s) is a C! regularization of [s]_ = max{0, —s}. We can take, for example,

o (s> 0)
9s(5) = (V2182 —8) (s<0). (3)

First, we explain our motivation for studying (1) and (2). In numerical simulation of real-world flow problems, we often
encounter some issues related to artificial boundary conditions. A typical and important example is the blood flow problem
in the large arteries, where the blood is assumed to be a viscous incompressible fluid (see [17,32]). The blood vessel is
modeled as a branched pipe as illustrated, for example, in Fig. 1. Then, for T > 0, we consider the Navier-Stokes equations
for velocity v = (vq,..., vg) and pressure g,

vi+(v-V)v=V.oWv,q)+f, V-v=0 inQ2x(0,T), (4a)
v=>b on Sy x (0,T), (4b)
v=0 onS; x (0,T) (4c)

with the initial condition v|;—g = vo. We are able to give a velocity profile b = b(x, t) at the inflow boundary S1. The flow is
presumed to be a perfect non-slip flow on the wall S,. Then, the blood flow simulation is highly dependent on the choice
of artificial boundary conditions posed on the outflow boundary T.

An earlier paper by Zhou and Saito [34] presented discussion of the free-traction condition

7(v,q)=0 onT, (5)

which is one of the common outflow boundary conditions (see [19,22]), and some nonlinear energy-preserving boundary
conditions (see [3,7,8,11,12]) from the view-point of energy inequality. Moreover, we proposed a new outflow boundary
condition as

vi >0, 7(v,q) >0, vuTa(v,q9)=0, 77r(v)=0 onT. (6)

This is an analogy to Signorini's condition in the theory of elasticity (see [24]). It is indeed a generalization of the free-
traction condition (5), as
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