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In this paper, we present a convergence analysis of a two-dimensional central finite volume 
scheme on unstructured triangular grids for hyperbolic systems of conservation laws. More 
precisely, we show that the solution obtained by the numerical base scheme presents, 
under an appropriate CFL condition, an optimal convergence to the unique entropy solution 
of the Cauchy problem.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Very few are the convergence studies of central finite volume schemes on staggered unstructured grids for multi-
dimensional domains. In [4,6,8] convergence on a fixed grid has been proven. Whereas in [2] and [1] a proof was developed 
for the case of linear conservation laws on barycentric two dimensional grids. Convergence of the first order Lax–Friedrichs 
scheme on the same special staggered grids for nonlinear scalar problems was provided in [7]. Assuming a discontinuous 
initial function u0 ∈ L∞(Rd) ∩ BVloc(R

d) for resolving the nonlinear hyperbolic equation with the Lax–Friedrichs type finite 
volume scheme on unstructured grids, Küther [9] proved that an error estimate of order 0.25 is expected, which is not 
optimal. On the other hand, Sabac [10] demonstrated that h

1
2 is optimal for first order schemes.

In this work, we present a convergence analysis of the two-dimensional central finite volume schemes on unstructured 
triangular grids recently developed in [11] for hyperbolic systems of conservation laws. These schemes are particularly 
interesting when solving hyperbolic systems on irregular geometries since they use triangular cells as control volumes, 
which leads to lower computational costs and faster simulations as compared to other finite volume methods. Furthermore, 
the choice of the dual control cells of the finite volume method developed in [11] (quadrilateral cells) lead to a an easier 
and simpler construction of the numerical scheme as compared to the case of finite volume methods with barycentric dual 
cells such as in [3]

The proposed analysis is based on the convergence proof for the barycentric-cells central finite volume method for 
nonlinear hyperbolic equations established in [7]; this proof was developed for central finite volume schemes on barycentic 
control cells defined over triangular meshes with quadrilateral staggered dual cells.
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Fig. 1. Triangular control cells of the original grid.

In our convergence analysis we adopt the convergence study technique developed in the work of Haasdonk, Kröner and 
Rohde [7] and develop a convergence analysis of the central finite volume schemes on non-barycentric triangular cells [11]
in the case of scalar nonlinear hyperbolic conservation laws. More precisely, we show that evolving a piecewise constant 
numerical solution using the Lax–Friedrichs version of the central finite volume method on unstructured triangular cells 
[11] leads to a first-order convergence rate. Numerical experiments validate the expected order of convergence.

2. A Lax–Friedrichs scheme extension on unstructured triangular grids

In this section we briefly describe the Lax–Friedrichs extension to the case of two-dimensional unstructured triangular 
grids. The convergence study of this extension will be presented in Section 3.

Starting with the two-dimensional conservation law{
ut + ∇ ·F(u) = 0, (x, y) ∈ Ω, t > 0,

u(x, y,0) = u0(x, y), (x, y) ∈ Ω
(1)

where u is a scalar field, u0 ∈ L1(R2) ∩ L∞(R2) and F ∈ C1(R2) : R2 × R
+ × R �→ R

2 is such that ((x, y), t, u(x, y, t)) �→
F((x, y), t, u(x, y, t)) and ∂F

∂u is locally Lipschitz continuous. We denote by f and g ∈ C1(R) the components of the vec-
tor F .

We assume that the computational domain Ω is discretized using a finite element triangulation Th , and we assume that 
the initial condition is defined at the centroids Gi = (xi, yi) of the triangles Ti of the mesh. The method we present evolves 
a piecewise constant numerical solution on two staggered grids at consecutive time-steps. Assuming that un

i approximates 
the solution u(xi, yi, tn) at time t = tn on the control cells Ti , the solution at the next time-step tn+1 = tn +�t is computed 
on the staggered cells Q ij obtained by joining the centroids Gi and G j of two adjacent triangular cells Ti and T j to the 
endpoints ai and a j of their common edge [ai, a j] as shown in Fig. 1. The solution at time tn+2 will be calculated at the 
centers Gi of the triangles Ti . Alternating the numerical solution at consecutive time-steps on the original and staggered 
grids avoids the time consuming process of solving the Riemann problems arising at the cell interfaces.

Assuming that un
i is known at time tn on the cells Ti , the solution un+1

i j at time tn+1 is calculated as follows.

We first integrate the conservation law (1) on the domain Q ij × [tn, tn+1] and we apply Greens formula, we obtain:

∫
Q ij

u
(
x, y, tn+1)dA−

∫
Q ij

u
(
x, y, tn)dA+

tn+1∫
tn

∫
∂ Q ij

(
f
(
u(x, y, t)

)
νx + g

(
u(x, y, t)

)
νy

)
dσdt = 0, (2)

where (νx, νy) denotes the unit outward normal vector to the boundary ∂ Q ij of the quadrilateral dual cell Q ij (see Fig. 2).
Since the numerical solution at any time tn is piecewise constant defined on the control cells, and knowing that Q ij =
(Q ij ∩ Ti) ∪ (Q ij ∩ T j), we obtain

un+1
i j = 1

A(Q ij)

(
un

i A(Q ij ∩ Ti) + un
jA(Q ij ∩ T j)

) − 1

A(Q ij)

tn+1∫
tn

∫
∂ Q ij

(
f
(
u(x, y, t)

)
νx + g

(
u(x, y, t)

)
νy

)
dσdt, (3)

where A(Q ij) denotes the area of the quadrilateral cell Q ij . The flux integrals in time and space are estimated using 
first-order quadrature rules as follows:
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