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The purpose of this paper is to study the dynamics of the interaction among a special class
of solutions of the one-dimensional Camassa–Holm equation. The equation yields soliton
solutions whose identity is preserved through nonlinear interactions. These solutions are
characterized by a discontinuity at the peak in the wave shape and are thus called peakon
solutions. We apply a particle method to the Camassa–Holm equation and show that the
nonlinear interaction among the peakon solutions resembles an elastic collision, i.e., the
total energy and momentum of the system before the peakon interaction is equal to the
total energy and momentum of the system after the collision. From this result, we provide
several numerical illustrations which support the analytical study, as well as showcase the
merits of using a particle method to simulate solutions to the Camassa–Holm equation
under a wide class of initial data.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to investigate the dynamics of the interaction among peakon solutions for the one-
dimensional (1-D) Camassa–Holm (CH) equation as well as showcase the merits of using particle methods to simulate
solutions to the CH equation using arbitrary smooth initial data. To this extent, the CH equation is given by

mt + umx + 2mux = 0, m = u − α2uxx, (1)

which is subjected to the following initial data:

m(x,0) = m0(x). (2)

Here, m is the momentum related to the fluid velocity u by the 1-D Helmholtz operator (see (1)).
Eq. (1) arises in a wide range of scientific applications and, for example, can be described as a bi-Hamiltonian model

in the context of shallow water waves, see [2,14,15]. It can also be used to quantify growth and other changes in shape,
such as those which occur in a beating heart, by providing the transformative mathematical path between two shapes (for
instance, see [21] p. 420).

The CH equation exhibits some interesting properties among a class of nonlinear evolutionary PDEs. For instance,
the equation is completely integrable and thus possesses an infinite number of conservation laws. Eq. (1) yields soli-
ton solutions—whose identity is preserved through nonlinear interactions—which are characterized by a discontinuity
at the peak in the wave shape., see, e.g. [2,4,27]. More precisely, Eq. (1) admits traveling wave solutions of the form
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u(x, t) = ae−|x−ct| with speed proportional to amplitude. For these reasons, soliton solutions generated from the CH equation
are referred to as peakons. Peakons are also orbitally stable as their shape is maintained under small perturbations; see, e.g.
[16,25,17].

Simulating these peakon solutions numerically poses quite a challenge—especially if one is interested in considering a
peakon–antipeakon interaction (i.e., the interaction between positive and negative peakons). Several sophisticated numer-
ical methods in finite-difference, finite-element, and spectral settings have been proposed for accurately resolving the CH
equation—in particular, peakon interactions. For example, in [18], a self-adaptive mesh method was proposed, whereas in
[22,23], a spectral projection method was used to simulate solutions to the CH equation. In [13], the authors used multi-
symplectic integration, and in [26], an energy-conserving Galerkin scheme was proposed. In [12], the authors considered a
dispersion-relation-preserving algorithm. For additional numerical schemes proposed for solving the CH equation, we refer
the reader to [1,3,20,29,30] and references therein. Many of these methods are computationally intensive and require very
fine grids along with adaptivity techniques in order to model the peakon behavior. Moreover, many of these methods are
unable to successfully resolve the peakon–antipeakon interaction.

Solutions of (1), (2) can be accurately captured by using a particle method, as shown in [20,10,5,6]. In the particle
method, described in [10,6,11], the solution is sought as a linear combination of Dirac distributions, whose positions and
coefficients represent locations and weights of the particles, respectively. The solution is then found by following the time
evolution of the locations and the weights of these particles according to a system of ODEs obtained by considering a weak
formulation of the problem. The particle methods presented in [5,6] have been derived using a discretization of a variational
principle and provide the equivalent representation of the ODE particle system. The main advantage of particle methods is
their (extremely) low numerical diffusion that allows one to capture a variety of nonlinear waves with high resolution; see,
e.g., [7–9,28] and references therein.

In this paper, we apply the particle method for the numerical solution of the CH equation in order to study the elastic
collisions among peakon solutions. We begin, in Section 2, with a brief overview of the particle method and some of its
main properties which are necessary for the study of numerical collisions among peakon solutions. We then provide in
Section 3 an analytical discussion about the behavior of peakon interactions for two positive peakons. Finally, in Section 4,
we present several numerical experiments which showcase both the complex interactions among peakon solutions, as well
as the merits of using a particle method to simulate such solutions.

2. Description of the particle method for the Camassa–Holm equation

In this section, we briefly describe a particle method for the CH equation. For a more detailed description on the par-
ticle method for (1), we refer the reader to [10,11,6]. We begin by searching for a weak solution in the form of a linear
combination of Dirac delta distributions. In particular, we look for a solution of the form:

mN(x, t) =
N∑

i=1

pi(t)δ
(
x − xi(t)

)
. (3)

Here, xi(t) and pi(t) represent the location of the i-th particle and its weight, and N denotes the total number of particles.
The solution is then found by following the time evolution of the locations and the weights of the particles according to
the following system of ODEs:⎧⎪⎪⎨⎪⎪⎩

dxi(t)

dt
= u

(
xi(t), t

)
, i = 1, . . . , N,

dpi(t)

dt
+ ux

(
xi(t), t

)
pi(t) = 0, i = 1, . . . , N.

(4)

Using the special relationship between m and u given in (1), one can directly compute the velocity u and its derivative, by
the convolution u = G ∗ m, where G is the Green’s function

G
(|x − y|) = 1

2α
e−|x−y|/α, (5)

associated with the one-dimensional Helmholtz operator in (1). Thus we have the following exact expressions for both
u(x, t) and (by direct computation) ux(x, t):

uN(x, t) = (
mN ∗ G

)
(x, t) = 1

2α

N∑
i=1

pi(t)e−|x−xi(t)|/α, (6)

uN
x (x, t) = (

mN ∗ Gx
)
(x, t) = − 1

2α2

N∑
i=1

pi(t) sgn
(
x − xi(t)

)
e−|x−xi(t)|/α. (7)

To initialize the particle method for the CH equation, one should choose the initial positions of particles, xi(0), and the
weights, pi(0), so that (3) represents a high-order approximation to the initial data m0(x) in (1). The latter can be done in
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