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The Uzawa-like algorithm is implemented for two-dimensional flows of viscoplastic fluids. 
The rheological model employed is the ideal Bingham model. As a test the lid-driven 
square-cavity benchmark problem is considered. The results for the steady-state problem 
are faithfully reproduced as compared to those in the literature for the shape and location 
of the yield surface. The proposed method is very successful at capturing both yielded and 
unyielded regions.
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1. Introduction

Viscoplastic materials behave as rigid solids when the imposed stress is smaller than the yield stress, and they flow as 
fluids when yielded. The flow field is divided into two regions: the unyielded (rigid) and the yielded (fluid) zone. As a rule, 
the following two types of rigid zones are traditionally distinguished: the stagnation (dead) zones, where the medium is 
at rest, and the plug region (core), where the medium moves as a rigid body. The separation surfaces between rigid and 
fluid zones are related to the yield surfaces. The location and shape of the unyielded region have to be found as part of the 
solution of the initial boundary-value problem. Thus, the characteristic feature in the problem of viscoplastic medium flows 
is the necessity of constructing a solution in a domain with an unknown boundary.

The main difficulty in the numerical simulation of viscoplastic fluid flow is related to the non-differentiable form of 
constitutive law and inability to evaluate the stresses in regions where the material has not yielded. There are two principal 
approaches that have been proposed in the literature to overcome the mathematical problem of viscoplastic fluid flow. The 
first one, known as regularization method, consists in approximating the constitutive equation by a smoother one. The sec-
ond method is based on the theory of variational inequalities [4]. In the latter case, the problem reduces to the minimization 
of a functional and a further solution of the equivalent saddle-point problem. To solve the saddle-point problem have been 
proposed two slightly different methods. The Uzawa-like method [9], based on the multiplier theorem [4], introduces an ad-
ditional variable (multiplier), which is proportional to the tensor of plastic stress. Augmented Lagrangian method (ALM) [6]
introduces additional strain rate tensor and Lagrange multiplier, which has the meaning of the extra stress tensor. Various 
contributions to the literature include [2,6,8,10,16,17,21–23]. For the numerical simulation of Bingham flow taking into ac-
count the convection time discretization by operator-splitting (fractional step) [13] is used. The projection method is a form 
of the fractional step method adapted to the Navier–Stokes equations. A large body of literature has been devoted to the 
construction, analysis and implementation of projection-type schemes [12]. The ancestor is the Chorin–Temam [18] projec-
tion method which is based on the Helmholtz decomposition principle. Fractional step methods have employed to decouple 
three main difficulties of the simulation of the Bingham fluid flow: the nonlinear convective term, the non-differentiability 
of the constitutive law, and the incompressibility assumption.

Dean, Glowinski and Guidoboni [2] have applied the first-order operator splitting scheme for the simulation of the Bing-
ham media flow. For the time scheme, they decoupled the main system into two sub-systems: a Navier–Stokes problem and 
a plasticity problem. They further decouple the Navier–Stokes problem into the generalized Stokes problem and transport 
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problem. Another numerical strategy to calculate unsteady flow of Bingham fluids that relies on decoupling scheme was 
proposed in [22]. It consists of three steps – convective step, diffusion step and plasticity step, the latter was solved by 
algorithm ALG2. Third variant of operator-splitting method was presented in [23] (it is modification of method proposed 
in [2]). For the space discretization the finite element method [2,22] and the finite difference method on half-staggered 
grids [23] were used. In all paper listed above, the lid-driven cavity problem was considered as a numerical example. The 
main goal of current study is to suggest another operator-splitting scheme and provide computational experiments for high 
Reynolds numbers. For discretization we use the finite difference method [11] on staggered grids (MAC).

2. Problem statement

The isothermal flow of an incompressible viscoplastic fluid is governed by the following equations:

ρ
(
∂tu + (u · ∇)u

) = −∇p + ∇ · τ + f in Ω × (0, T ), (1)

∇ · u = 0 in Ω × (0, T ), (2)

τ = 2μD + τ0
√

2
D

|D| , if |τ | ≥ τ0, (3)

|D| = 0, if |τ | < τ0.

Here Ω denotes a bounded domain in Rd (d = 2, 3), Γ the boundary of the domain, [0, T ] a time interval, u is the velocity 
vector, ρ is the density, p is the pressure, τ is the extra stress tensor, f is the given field of external forces, τ0 is the 
yield stress and μ is the plastic viscosity, D is rate-of-strain tensor D(u) = (∇u + (∇u)T )/2 with norm |D| = √

D : D, and 
A : B = ∑d

i=1
∑d

j=1 aijbi j , for all A = (aij), B = (bij). The first equation represents the momentum equation, the second one is 
continuity equation, while the third one is the rheological constitutive relations (Bingham model). Hereinafter we consider 
d = 2. The above system of equations must be provided with suitable initial and boundary conditions:

u(0) = u0 in Ω, ∇ · u0 = 0, u = uB on Γ × (0, T ). (4)

Following Duvaut and Lions [4], instead of nonlinear equations (1)–(4) we consider the following variational inequality 
model: find u ∈ (H1

0(Ω))2 such that a.e. on (0, T ) we have

ρ

∫
Ω

∂tu(t) · (v − u(t)
)
dx + ρ

∫
Ω

(
u(t) · ∇)

u(t) · (v − u(t)
)
dx

+ μ

∫
Ω

∇(
u(t)

) : ∇(
v − u(t)

)
dx + τ0

√
2
∫
Ω

(∣∣D(v)
∣∣ − ∣∣D(

u(t)
)∣∣)dx

≥
∫
Ω

f(t) · (v − u(t)
)
dx, ∀v ∈ UB , (5)

∇ · u(t) = 0 in Ω, u(0) = u0 in Ω, u(t) = uB(t) on Γ,

UB = {
v ∈ (

H1(Ω)
)d | v = uB(t) on Γ

}
. (6)

It follows from [4] that there exists a tensor-valued function λ such that the formulation (5)–(6) is equivalent to

τ = 2μD(u) + τ0
√

2λ, (7)

λ = λT , |λ| ≤ 1, λ : D(u) = ∣∣D(u)
∣∣ a.e. in Ω × (0, T ), (8)

ρ

[
∂u

∂t
+ (u · ∇)u

]
− μ�u − τ0

√
2∇ · λ + ∇p = f in Ω × (0, T ), (9)

∇ · u = 0 in Ω × (0, T ), u(0) = u0 in Ω, u = 0 on Γ × (0, T ). (10)

Relations (7) are equivalent to λ = PΛ(λ + rτ0
√

2D) for ∀r ≥ 0 with the closed convex set Λ and the projection operator 
PΛ : (L2(Ω))4 → Λ,

Λ = {
q ∈ (

L2(Ω)
)4

, |q| ≤ 1, q = qT }
,

PΛ(q) = {
q, if |q| ≤ 1, q/|q|, if |q| > 1

}
. (11)

In most of the papers devoted to numerical modeling of Bingham medium, the convective terms are neglected. In this 
case, we use backward Euler scheme for time-discretization of problem (5). We have supposed the time interval of interest 
(0, T ) has been divided into N subintervals [tn, tn+1], where tn+1 − tn = �t , n = 0, 1, . . . , N − 1. Assume

u0 = u0,
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