
Applied Numerical Mathematics 99 (2016) 24–50

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Multiple time-dependent coefficient identification thermal 
problems with a free boundary

M.S. Hussein a,b, D. Lesnic a,∗, M.I. Ivanchov c, H.A. Snitko d

a Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
b Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
c Faculty of Mechanics and Mathematics, Department of Differential Equations, Ivan Franko National University of Lviv, 1, Universytetska str., 
Lviv, 79000, Ukraine
d Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Science of Ukraine, 3-b, Naukova Str., Lviv, 
79060, Ukraine

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2015
Received in revised form 11 June 2015
Accepted 3 September 2015
Available online 9 September 2015

Keywords:
Inverse problem
Tikhonov regularization
Free boundary
Heat equation

Multiple time-dependent coefficient identification thermal problems with an unknown 
free boundary are investigated. The difficulty in solving such inverse and ill-posed free 
boundary problems is amplified by the fact that several quantities of physical interest 
(conduction, convection/advection and reaction coefficients) have to be simultaneously 
identified. The additional measurements which render a unique solution are given by 
the heat moments of various orders together with a Stefan boundary condition on 
the unknown moving boundary. Existence and uniqueness theorems are provided. The 
nonlinear and ill-posed problems are numerically discretised using the finite-difference 
method and the resulting system of equations is solved numerically using the MATLAB 
toolbox routine lsqnonlin applied to minimizing the nonlinear Tikhonov regularization 
functional subject to simple physical bounds on the variables. Numerically obtained results 
from some typical test examples are presented and discussed in order to illustrate the 
efficiency of the computational methodology adopted.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Inverse coefficient identification problems (ICIP) for partial differential equations are some of the most complicated and 
practically important problems. Being in addition nonlinear, optimization techniques are mainly used for their numerical 
solutions, as well as various modifications tailored to the properties of the corresponding direct problems (monotonicity 
or/and smoothness of their solutions, etc.), [13]. ICIP’s with one or several unknown coefficients play a substantial role in 
the theory and application of inverse problems. A great attention was paid to this kind of inverse problems due to the 
industrial applications in practice, for instance, the determination of the thermal conductivity, heat capacity, absorption 
coefficient, etc., in the field of heat conduction or porous media.

Many practical problems involve a free boundary and the Stefan problem is a typical example of a problem of this 
kind, [22,23]. Under suitable changes of variables, free boundary problems can be reduced to ICIP’s in a fixed domain. 
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This approach opens the new and more complicated area of inverse problems that combine free boundary problems with 
coefficient identification problems. One of the main feature of these problems is that the unknowns depend solely on the 
time variable and this enables a neat mathematical treatment based on Green’s functions, [10].

Prior to this study, references [4,7,9] investigated both theoretically and numerically several such combined formula-
tions for the retrieval of the free boundary together with the thermal diffusivity both which are unknown time-dependent 
functions. The theoretical investigation has been extended recently to the case of several multiple coefficients in [18,19]
and it the purpose of this study to, apart from some theoretical clarifications which are elaborated in Section 2, perform 
the numerical realization using the finite-difference method (FDM) combined with a nonlinear least-squares toolbox MAT-
LAB routine, see Sections 3 and 4. In Section 5, we provide numerical results and discussion, whilst Section 6 presents an 
extension to a triple unknown coefficient identification. Finally, conclusions are highlighted in Section 7.

2. Mathematical formulation

Consider the one-dimensional time-dependent heat equation

∂u

∂t
(x, t) = a(x, t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + c(t)u(x, t) + f (x, t), (x, t) ∈ � (1)

for the unknown temperature u(x, t) in the domain � = {(x, t)| 0 < x < h(t), 0 < t < T < ∞} with unknown free smooth 
boundary x = h(t) > 0 and time-dependent coefficients b(t) and c(t) representing the convection/advection and reaction 
coefficients, respectively. Also in (1), f (x, t) represents a given heat source, whilst a(x, t) > 0 is the given thermal diffusivity. 
In many applications, [4,8,19,24], the thermal diffusivity depends on time only, but here we envisage a more general physical 
situation in which the thermal conductivity depends on time and the heat capacity depends on space such that their ratio 
defined as the thermal diffusivity depends on both space and time. To give more physical meaning to the inverse problem, 
we have in mind a process in which a finite slab is undertaking radioactive decay such that its diffusivity, convection and 
reaction coefficients are unknown but they depend on time [1, Chap. 13], [16]. We finally mention that extensions to cases 
when the time-dependent heat source is also unknown or when some unknown coefficients may depend on space as well 
have recently been considered elsewhere, [5,6].

The initial condition is

u(x,0) = φ(x), 0 ≤ x ≤ h(0) =: h0, (2)

where h0 > 0 is given, and the Dirichlet boundary conditions are

u(0, t) = μ1(t), u(h(t), t) = μ2(t), t ∈ [0, T ]. (3)

As over-determination conditions we consider, [18],

h′(t) + ux(h(t), t) = μ3(t), t ∈ [0, T ], (4)
h(t)∫
0

u(x, t)dx = μ4(t), t ∈ [0, T ], (5)

h(t)∫
0

xu(x, t)dx = μ5(t), t ∈ [0, T ]. (6)

Note that μ4(t) and μ5(t) represent the specification of the energy or, mass of the heat conducting system and heat 
momentum, respectively, [2,11,15]. Also, equation (4) represents a Stefan interface moving boundary condition.

Now we perform the change of variable y = x/h(t) to reduce the problem (1)–(6) to the following inverse problem for 
the unknowns h(t), b(t), c(t) and v(y, t) := u(yh(t), t):

∂v

∂t
(y, t) = a(yh(t), t)

h2(t)

∂2 v

∂ y2
(y, t) + b(t) + yh′(t)

h(t)

∂v

∂ y
(y, t) + c(t)v(y, t)+ f (yh(t), t), (y, t) ∈ Q T (7)

in the fixed domain Q T := {(y, t) : 0 < y < 1, 0 < t < T } = (0, 1) × (0, T ),

v(y,0) = φ(h0 y), y ∈ [0,1], (8)

v(0, t) = μ1(t), v(1, t) = μ2(t), t ∈ [0, T ], (9)

h′(t) + 1

h(t)
v y(1, t) = μ3(t), t ∈ [0, T ], (10)

h(t)

1∫
0

v(y, t)dy = μ4(t), t ∈ [0, T ], (11)
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