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We present a certified version of the Natural-Norm Successive Constraint Method (cNNSCM) 
for fast and accurate Inf–Sup lower bound evaluation of parametric operators. Successive 
Constraint Methods (SCM) are essential tools for the construction of a lower bound for 
the inf–sup stability constants which are required in a posteriori error analysis of reduced 
basis approximations. They utilize a Linear Program (LP) relaxation scheme incorporating 
continuity and stability constraints. The natural-norm approach linearizes a lower bound 
of the inf–sup constant as a function of the parameter. The Natural-Norm Successive 
Constraint Method (NNSCM) combines these two aspects. It uses a greedy algorithm to 
select SCM control points which adaptively construct an optimal decomposition of the 
parameter domain, and then apply the SCM on each domain.
Unfortunately, the NNSCM produces no guarantee for the quality of the lower bound. 
Through multiple rounds of optimal decomposition, the new cNNSCM provides an upper 
bound in addition to the lower bound and lets the user control the gap, thus the quality of 
the lower bound. The efficacy and accuracy of the new method is validated by numerical 
experiments.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

For affinely parametrized partial differential equations, the certified reduced basis method (RBM) [20,23,25,11] utilizes 
an Offline–Online computational decomposition strategy to produce surrogate solution (of dimension N) in a time that is 
of orders of magnitude shorter than what is needed by the underlying numerical solver of dimension N � N (called truth
solver hereafter). The RBM relies on a projection into a low dimensional space spanned by truth approximations at an 
optimally sampled set of parameter values [2,9,21,22,18]. This low-dimensional manifold is generated by a greedy algorithm 
making use of a rigorous a posteriori error bounds for the field variable and associated functional outputs of interest which 
also guarantees the fidelity of the surrogate solution in approximating the truth approximation. The high efficiency and 
accuracy of RBM render it an ideal candidate for practical methods in the real-time and many-query contexts.

This crucial a posteriori error bound is residual-based and requires an estimate (lower bound) for the stability factor of 
the discrete partial differential operator, that is the coercivity or inf–sup constant. In the RBM context, given any parameter 
value this stability factor must be estimated efficiently. So it should also admit an Offline–Online structure for which the 
Online expense is independent of N . Moreover, the optimality of the low-dimensional RB manifold is dependent on the 
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quality of this estimate as a parameter-dependent function, so the lower bound should not be too pessimistic. There are 
several approaches in the literature. A Successive Constraint Method (SCM) is proposed in [14] and subsequently improved 
in [4,5,28,29]. It is a framework incorporating both continuity and stability information whose Online component is the 
resolution of a small-size Liner Programming (LP) problem. Hence, this procedure is rather efficient. However, the classical 
inf–sup formulation has couple of undesirable attributes – a Q 2-term affine parameter expansion (resulting from a squaring 
of the operator), and loss of (even local) concavity. On the other hand, a “natural-norm” method is proposed in [7,26]. Its 
linearized-in-parameter inf–sup formulation has several desirable approximation properties – a Q -term affine parameter ex-
pansion, and first order (in parameter) concavity; however, the lower bound procedure is rather crude – a framework which 
incorporates only continuity information. A natural-norm SCM approach is proposed in [13] combining the “linearized” inf–
sup statement with the SCM lower bound procedure. The former (natural-norm) provides a smaller optimization problem 
which enjoys intrinsic lower bound properties. The latter (SCM) provides a systematic optimization framework: a Linear 
Program relaxation which readily incorporates effective stability constraints. The natural-norm SCM performs very well in 
particular in the Offline stage: it is typically an order of magnitude less costly than either the natural-norm or “classical” 
SCM approaches alone. However, unlike the classical SCM, it provides no upper-bound thus no control of the quality of the 
lower bound. This often results in extremely pessimistic estimate.

There are other methods such as the θ -methods that were compared to SCMs in [12]. In this paper, we focus on the 
SCM-type of approaches and propose a certified version of the NNSCM (cNNSCM). Without significantly degrading the 
efficiency, it provides an upper-bound and thus a mechanism for the user to easily control the quality of the lower bound. 
As a result, the lower bound of the new cNNSCM may be orders of magnitude more accurate than the original NNSCM 
thanks to the design of multiple rounds of decomposition of the parameter domain. The method is tested on two elliptic 
partial differential equations. In what follows, we use the same notation as in [13] and denote the classical SCM method 
[14,4,5] as SCM2 in order to differentiate it from the new natural-norm type of approaches. Here, the (squared) superscript 
suggests the undesired Q 2-term affine parameter expansion in the classical method.

This paper is organized as follows. In Section 2, we review the background materials including the RBM, its A Posteriori
error estimation and the involved stability constant. Section 3 describes the natural-norm SCM. The new certified NNSCM is 
proposed in Section 4. Numerical validations are presented in Section 5, and finally some concluding remarks are offered in 
Section 6.

2. Background

For the completeness of this paper and to put the concerned method into context, we introduce the necessary back-
ground materials in this section. To that end, this section covers the truth solver and the related stability constants, the 
reduced basis method, and the A Posteriori error estimate needed therein.

2.1. Notations

We use � ⊂ R
n (n = 2 or 3) to denote a bounded physical domain with boundary ∂�. We introduce a closed parameter 

domain D ∈R
P , a point (P -tuple) in which is denoted μ = (μ1, . . . , μP ). A set of N parameter values will be differentiated 

by superscripts {μi}N
i=1. Let us then define the Hilbert space X equipped with inner product (·, ·)X and induced norm ‖ · ‖X . 

Here (H1
0(�))V ⊂ X ⊂ (H1(�))V (V = 1 for a scalar field and V > 1 for a vector field) [24,1]. We introduce a parametrized 

bilinear form. a(·, ·; μ): X × X →R is such that

• it is inf–sup stable and continuous over X : β(μ) > 0 and γ (μ) is finite ∀μ ∈D, where

β(μ) = inf
w∈X

sup
v∈X

a(w, v;μ)

‖w‖X ‖v‖X
, and γ (μ) = sup

w∈X
sup
v∈X

a(w, v;μ)

‖w‖X ‖v‖X
;

• a is “affine” in the parameter: a(w, v; μ) =
Q∑

q=1

�q(μ)aq(w, v).

Finally, we introduce two linear bounded functionals f (·; μ) : X → R and �(·; μ) : X → R that are also affine in the param-
eter. The following continuous problem is then well-defined.

(P C ) Given μ ∈D, find u(μ) ∈ X such that a(u(μ), v; μ) = f (v, μ), ∀v ∈ X .
For many applications, we concern a scalar quantity of interest as s(μ) = �(u(μ), μ). To discretize this problem, we 

consider for an example a finite element approximation space (of dimension N ) XN ⊂ X . Suppose that the discretized 
bilinear form remains inf–sup stable (and continuous) over XN with constants βN (μ) > 0 and γN (μ) being finite ∀μ ∈D, 
where

βN (μ) = inf
w∈XN

sup
v∈XN

aN (w, v;μ)

‖w‖XN ‖v‖XN
and γN (μ) = sup

w∈XN
sup

v∈XN

aN (w, v;μ)

‖w‖XN ‖v‖XN
.
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