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A new time discretization scheme for the numerical simulation of two-phase flow governed 
by a thermodynamically consistent diffuse interface model is presented. The scheme is 
consistent in the sense that it allows for a discrete in time energy inequality. An adaptive 
spatial discretization is proposed that conserves the energy inequality in the fully discrete 
setting by applying a suitable post processing step to the adaptive cycle. For the fully 
discrete scheme a quasi-reliable error estimator is derived which estimates the error both 
of the flow velocity, and of the phase field. The validity of the energy inequality in the fully 
discrete setting is numerically investigated.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the present work we propose a stable and (essentially) linear time discretization scheme for two-phase flows governed 
by the diffuse interface model

ρ∂t v + ((ρv + J ) · ∇) v − div (2ηD v) + ∇p = μ∇ϕ + ρg ∀x ∈ �, ∀t ∈ I, (1)

div(v) = 0 ∀x ∈ �, ∀t ∈ I, (2)

∂tϕ + v · ∇ϕ − div(m∇μ) = 0 ∀x ∈ �, ∀t ∈ I, (3)

−σε	ϕ + F ′(ϕ) − μ = 0 ∀x ∈ �, ∀t ∈ I, (4)

v(0, x) = v0(x) ∀x ∈ �, (5)

ϕ(0, x) = ϕ0(x) ∀x ∈ �, (6)

v(t, x) = 0 ∀x ∈ ∂�, ∀t ∈ I, (7)

∇μ(t, x) · ν� = ∇ϕ(t, x) · ν� = 0 ∀x ∈ ∂�, ∀t ∈ I, (8)
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where J = − dρ
dϕ m∇μ. This model is proposed in [1]. Here � ⊂ R

n, n ∈ {2, 3}, denotes an open and bounded domain, I =
(0, T ] with 0 < T < ∞ a time interval, ϕ denotes the phase field, μ the chemical potential, v the volume averaged velocity, 
p the pressure, and ρ = ρ(ϕ) = 1

2 ((ρ2 − ρ1)ϕ + (ρ1 + ρ2)) the mean density, where 0 < ρ1 ≤ ρ2 denote the densities 
of the involved fluids. The viscosity is denoted by η and can be chosen arbitrarily, fulfilling η(−1) = η̃1 and η(1) = η̃2, 
with individual fluid viscosities η1, η2. The mobility is denoted by m = m(ϕ). The gravitational force is denoted by g . By 
D v = 1

2

(∇v + (∇v)t
)

we denote the symmetrized gradient. The scaled surface tension is denoted by σ and the interfacial 
width is proportional to ε . The free energy is denoted by F . For F we use a splitting F = F+ + F− , where F+ is convex and 
F− is concave.

The above model couples the Navier–Stokes equations (1)–(2) to the Cahn–Hilliard model (3)–(4) in a thermodynamically 
consistent way, i.e. a free energy inequality holds. It is the main goal to introduce and analyze an (essentially) linear 
time discretization scheme for the numerical treatment of (1)–(8), which also on the discrete level fulfills the free energy 
inequality. This in conclusion leads to a stable scheme that is thermodynamically consistent on the discrete level.

Existence of weak solutions to system (1)–(8) for a specific class of free energies F is shown in [2,3]. See also the work 
[27], where the existence of weak solutions for a different class of free energies F is shown by passing to the limit in a 
numerical scheme. We refer to [6,13,22,37], and the review [8] for other diffuse interface models for two-phase incom-
pressible flow. Numerical approaches for different variants of the Navier–Stokes Cahn–Hilliard system have been studied in 
[7,13,25,27–29,32], and [36].

This work is organized as follows. In Section 3 we derive a weak formulation of (1)–(8) and in Section 5 formulate a 
time discretization scheme. In Section 6 we derive the fully discrete model and show the existence of solutions for both the 
time discrete, and the fully discrete model, as well as energy inequalities, both for the time discrete model, and for the fully 
discrete model. In Section 7 we use the energy inequality to derive a residual based adaptive concept, and in Section 8 we 
numerically investigate properties of our simulation scheme.

2. Notation

Let � ⊂ R
n , n ∈ {2, 3} denote a bounded domain with boundary ∂� and outer normal ν� . Let I = (0, T ] denote a time 

interval.
We use the conventional notation for Sobolev and Hilbert Spaces, see e.g. [4]. With Lp(�), 1 ≤ p ≤ ∞, we denote the 

space of measurable functions on �, whose modulus to the power p is Lebesgue-integrable. L∞(�) denotes the space of 
measurable functions on �, which are essentially bounded. For p = 2 we denote by L2(�) the space of square integrable 
functions on � with inner product (·, ·) and norm ‖ · ‖. For a subset D ⊂ � and functions f , g ∈ L2(�) we by ( f , g)D denote 
the inner product of f and g restricted to D , and by ‖ f ‖D the respective norm. By W k,p(�), k ≥ 1, 1 ≤ p ≤ ∞, we denote 
the Sobolev space of functions admitting weak derivatives up to order k in L p(�). If p = 2 we write Hk(�). The subset 
H1

0(�) denotes H1(�) functions with vanishing boundary trace.
We further set

L2
(0)(�) = {v ∈ L2(�) | (v,1) = 0},

and with

H(div,�) = {v ∈ H1
0(�)n | (div(v),q) = 0∀q ∈ L2

(0)(�)}
we denote the space of all weakly solenoidal H1

0(�) vector fields.
For u ∈ Lq(�)n , q > n, and v, w ∈ H1(�)n we introduce the trilinear form

a(u, v, w) = 1

2

∫
�

((u · ∇) v) w dx − 1

2

∫
�

((u · ∇) w) v dx. (9)

Note that there holds a(u, v, w) = −a(u, w, v), and especially a(u, v, v) = 0.

3. Weak formulation

In the present section we formulate a weak formulation of (1)–(8). To begin with, note that for a sufficiently smooth 
solution (ϕ, μ, v) of (1)–(8) and using the linearity of ρ it holds

∂tρ + div (ρv + J ) = 0,

see [1, p. 14]. Using this mass balance we can rewrite (1) as

∂t(ρv) + div (ρv ⊗ v) + div (v ⊗ J ) − div (2ηD v) + ∇p = μ∇ϕ + ρg. (10)

We also note that the term ρv + J in (1) is not solenoidal (which might lead to difficulties both in the analytical and the 
numerical treatment) and that the trilinear form (((ρv + J ) · ∇)u, w) is not anti-symmetric. To obtain a weak formulation 
yielding an anti-symmetric convection term we use a convex combination of (1) and (10) to define a weak formulation. 
We multiply equations (1) and (10) by the solenoidal test function 1

2 w ∈ H(div, �), integrate over �, add the resulting 
equations and perform integration by parts. This gives
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