

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Quasi-orthogonality and real zeros of some $_2F_2$ and $_3F_2$ polynomials

S.J. Johnston a, K. Jordaan ^b*,*∗*,*¹

^a *Department of Mathematical Sciences, University of South Africa, PO Box 392, UNISA, 0003, South Africa*

^b *Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa*

A R T I C L E I N F O A B S T R A C T

Article history: Received 2 May 2014 Received in revised form 9 November 2014 Accepted 30 November 2014 Available online 3 December 2014

Keywords: Hypergeometric polynomials Quasi-orthogonal polynomials Zeros ³ *F*² polynomials ² *F*² polynomials

In this paper, we prove the quasi-orthogonality of a family of $_2F_2$ polynomials and several classes of ${}_{3}F_{2}$ polynomials that do not appear in the Askey scheme for hypergeometric orthogonal polynomials. Our results include, as a special case, two ³ *F*² polynomials considered by Dickinson in 1961. We also discuss the location and interlacing of the real zeros of our polynomials.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

A sequence ${P_n}$ of real polynomials of exact degree $n \in \mathbb{N}$ is orthogonal with respect to a positive-definite moment functional $\mathcal L$ if (cf. [\[3\]\)](#page--1-0)

 $\mathcal{L}[R_m(x)R_n(x)] = 0$ for $m \in \{0, 1, ..., n - 1\}.$

A well-known consequence of orthogonality is that the *n* zeros of $P_n(x)$ are real and simple and lie in the supporting set of L (cf. [\[3\]\)](#page--1-0). The zeros of P_n depart from the supporting set of L in a specific way when the parameters are changed to values where the polynomials are no longer orthogonal and this phenomenon can be explained in terms of the concept of quasi-orthogonality.

We say that a polynomial sequence ${R_n}$ is quasi-orthogonal of order $r > 1$, $r \in \mathbb{N}$ with respect to a moment functional $\mathcal L$ if

 $\mathcal{L}[R_m(x)R_n(x)] = 0, \quad |n - m| \ge r + 1$

$$
\exists s \ge r \text{ such that } \mathcal{L}[R_{s-r}(x)R_s(x)] \neq 0.
$$

It is equivalent to say that

Corresponding author.

<http://dx.doi.org/10.1016/j.apnum.2014.11.008>

E-mail addresses: johnssj@unisa.ac.za (S.J. Johnston), kjordaan@up.ac.za (K. Jordaan).

 1 Research by the second author is partially supported by the National Research Foundation of South Africa.

^{0168-9274/}© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

$$
\mathcal{L}[x^m R_n(x)] = 0, \quad m \in \{0, 1, \dots, n - (r + 1)\}, n \ge r + 1
$$

$$
\exists s \ge r \text{ such that } \mathcal{L}[x^{s-r} R_s(x)] \neq 0.
$$

Furthermore, R_n has at least $n - r$ distinct, real zeros in the supporting set of \mathcal{L} (cf. [\[3\]\)](#page--1-0).

Quasi-orthogonal polynomials of order 1 were first introduced by Riesz [\[22\]](#page--1-0) in 1923 in his solution of the Hamburger moment problem and Fejér [\[13\]](#page--1-0) considered quasi-orthogonality of order 2 in 1933. In 1937, Shohat [\[23\]](#page--1-0) generalised the concept of quasi-orthogonality to any order and showed that whenever there exists an orthogonal polynomial sequence ${P_n}$ for L, then ${R_n}$ being a quasi-orthogonal polynomial sequence of order $r > 1$ with respect to L, is equivalent to

$$
R_n(x) = \sum_{\nu=n-r}^n c_{n,n-\nu} P_{\nu}(x), \quad n \in \{r, r+1, \ldots\},
$$
\n(1.1)

whilst

$$
R_n(x) = \sum_{\nu=0}^n c_{n,n-\nu} P_{\nu}(x), \quad n \in \{0,\ldots,r-1\},\,
$$

and ∃ *s* \geq *r* such that $c_{s,s-r} \neq 0$.

A more general definition of quasi-orthogonality was given in 1957 by Chihara (cf. [\[2\]\)](#page--1-0), who discussed quasiorthogonality in the context of three-term recurrence relations, proving that a quasi-orthogonal polynomial of any order *r* satisfies a three-term recurrence relation whose coefficients are polynomials of appropriate degrees. Draux [\[5\]](#page--1-0) proved the converse of one of Chihara's results and Dickinson $[4]$ improved Chihara's result by deriving a system of recurrence relations that is both necessary and sufficient for quasi-orthogonality. Dickinson applied this method to some special cases of Sister Celine's polynomials

$$
f_n(a, x) = {}_3F_2\left(\begin{array}{c} -n, n+1, a \\ \frac{1}{2}, 1 \end{array}; x\right) = \sum_{m=0}^n \frac{(-n)_m (n+1)_m (a)_m}{(\frac{1}{2})_m (1)_m} \frac{x^m}{m!}
$$

and proved that $f_n(\frac{3}{2},x)$ and $f_n(2,x)$ are quasi-orthogonal of order 1 on the interval $(0,1)$ with respect to the weight functions $(1 - x)$ and $x^{-1/2}(1 - x)^{3/2}$ respectively. Algebraic properties of the linear functional associated to quasi-orthogonality are given in [\[5,18–20\].](#page--1-0) More recent results, particularly on the zeros of order 1 and 2 quasi-orthogonal polynomials, are due to Brezinski, Driver and Redivo-Zaglia $[1]$ and Joulak $[16]$. For the convenience of the reader, we summarise some of these results.

Lemma 1.1. Let $\{P_n\}$ be real, monic polynomials of exact degree n that are orthogonal with respect to a positive-definite moment functional L with supporting set (a, b) and let $x_{i,n}$, $i = 1, 2, ..., n$, be the zeros of $P_n(x)$ and y_i , $i = 1, 2, ..., n$, the zeros of $R_n(x)$, *where*

$$
R_n(x) = P_n(x) + a_n P_{n-1}(x)
$$

 $with a_n \neq 0$ *. Let* $f_n(x) = P_n(x)/P_{n-1}(x)$ *. Then*

- *(a)* $y_1 < a$ *if and only if* $-a_n < f_n(a) < 0$;
- *(b)* $b < y_n$ *if and only if* $-a_n > f_n(b) > 0$;
- (c) R_n has all its zeros in (a, b) if and only if $f_n(a) < -a_n < f_n(b)$;
- (d) $x_{i,n} < y_i < x_{i,n-1}$ for $i = 1, ..., n-1$, and $x_{n,n} < y_n$ if and only if $a_n < 0$;
- (e) $x_{i-1,n-1} < y_i < x_{i,n}$ for $i = 2, ..., n$ and $y_1 < x_{1,n}$ if and only if $a_n > 0$;
- (f) $y_{1,n+1} < y_{1,n} < y_{2,n+1} < \cdots < y_{n,n+1} < y_{n,n} < y_{n+1,n+1}$ if and only if $f_{n+1}(y_{n,n}) + a_{n+1} < 0$ when $a_n < 0$ or $f_{n+1}(y_{1,n}) +$ $a_{n+1} > 0$ *when* $a_n > 0$.

Proof. Parts (a), (b) and (c) are proved in [16, [Theorem](#page--1-0) 4], parts (d) and (e) in [16, Theorem 5] and (f) in [16, [Theo](#page--1-0)rem 6]. \Box

Lemma 1.2. Let $\{P_n\}$ be real polynomials of exact degree n that are orthogonal with respect to a positive-definite moment functional with supporting set (a, b), and let $x_{i,n}$, $i = 1, 2, ..., n$, be the zeros of $P_n(x)$ and y_i , $i = 1, 2, ..., n$, the zeros of $R_n(x)$, where

$$
R_n(x) = P_n(x) + a_n P_{n-1}(x) + b_n P_{n-2}(x)
$$

 w *ith* $b_n \neq 0$ *. Let* $f_n(x) = P_n(x)/P_{n-1}(x)$ *. Then*

(a) if $b_n < 0$ then all of the zeros of R_n are real and distinct and at most two of them lie outside the interval (a, b).

In particular,

Download English Version:

<https://daneshyari.com/en/article/4644993>

Download Persian Version:

<https://daneshyari.com/article/4644993>

[Daneshyari.com](https://daneshyari.com)