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A Gautschi time-stepping scheme for optimal control of linear second order systems is 
proposed and analyzed. Convergence rates are proved and shown to be valid in numerical 
experiments. The temporal discretization is combined with finite element and spectral 
based spatial discretizations, which are compared among themselves.
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1. Introduction

This work is devoted to developing a Gautschi time stepping approach for optimal control problems associated with sec-
ond order equations, including in particular the wave equation. Solving optimal control problems numerically necessitates to 
frequently solve the state equation and its adjoint, and hence an efficient method for the latter is indispensable. Compared 
to optimal control of diffusion systems, the numerical treatment of optimal control of the wave equation has received rela-
tively little attention so far. We refer to [10,9] where the dual weighted residual method for space-time discretization was 
developed, including as particular case the Crank–Nicolson discretization in time and first order finite element discretization 
in space. This approach has the desirable property that first discretizing the infinite dimensional optimal control problem 
and subsequently solving the necessary optimality conditions commutes with first setting up the necessary optimality con-
ditions for the infinite dimensional problem and subsequently discretizing them.

In the present work the focus is put on using a Gautschi scheme for temporal discretization. It will be combined with 
different spatial discretizations including finite element and spectral techniques. Gautschi integrators have received a consid-
erable amount of attention due to their desirable property that their step sizes are not restricted by the spectral properties of 
the underlying dynamical system. This is of particular interest for systems which allow highly oscillatory solutions. Gautschi 
type methods are constructed on the basis that they integrate linear systems with constant inhomogeneities exactly. We 
refer to [5,4,6,8] and the references given there for further properties of Gautschi techniques. For Gautschi-methods, we 
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can also show that discretizing before or after carrying out the optimization step, we obtain the same finite dimensional 
systems, for the class of spatial discretizations which we shall consider.

The paper is organized as follows. Section 2 contains the problem statement, first order optimality conditions and a 
brief recollection of cosine operators. The Gautschi time-stepping scheme in an infinite dimensional setting is presented in 
Section 3. Section 4 contains its analysis for the optimal control problem, with emphasis on the inexact conjugate gradient 
method for its numerical realization. Numerical results, highlighting convergence rates and comparisons between different 
spatial discretizations are given in Section 5.

2. Problem formulation and preliminaries

2.1. Problem formulation

Let V ⊂ H ⊂ V ′ be a Gelfand triple of real separable Hilbert spaces and let T > 0. Further let A : V → V ′ be a V elliptic 
operator, and consider for vectors y0 ∈ V , y1 ∈ H and f ∈ L2(0, T ; H) the abstract wave equation

∂2 y

∂t2
(t) = Ay(t) + f (t) for t ∈ (0, T ),

y(0) = y0,

∂ y

∂t
(0) = y1. (W)

Definition 2.1 (Weak solution). We say that y ∈ L2(0, T ; V ) is a weak solution of (W) iff yt ∈ L2(0, T ; H), ytt ∈ L2(0, T ; V ′),〈
∂2 y

∂t2
(t),ϕ

〉
V ′,V

= 〈
Ay(t),ϕ

〉
V ′,V + 〈

f (t),ϕ
〉
V ′,V for all ϕ ∈ V , and t ∈ (0, T ),

and y(0) = y0, yt(0) = y1.

Existence and uniqueness of a weak solution to (W) are well understood (see e.g. [19, Chapter 29, p. 436]). The solution 
operator SW : L2(0, T ; H) × V × H → L2(0, T ; H) of the wave equation, which maps ( f , y0, y1) to the solution y of (W), is 
continuous (see [19, p. 437]).

For β ∈L(L2(0, T ; H)), z̃ ∈ L2(0, T ; H) and α > 0 we consider the optimal control problem

min
y,u∈L2(0,T ;H)

1

2
‖y − z‖2

L2(0,T ;H) + α

2
‖u‖2

L2(0,T ;H),

s.t.
∂2 y

∂t2
= Ay + βu,

y(0, x) = y0(x),
∂ y

∂t
(0, x) = y1(x). (OC)

Define the solution operator S : L2(0, T ; H) → L2(0, T ; H) associated to the wave equation by Su := SW (βu, y0, y1) = y, 
with y is solution to (W). We arrive at the reduced problem

min
u∈L2(0,T ;H)

1

2
‖Su − z̃‖2

L2(0,T ;H) + α

2
‖u‖2

L2(0,T ;H). (1)

It is well known that (1) has a unique solution, see e.g. [18, p. 40]. From now on we may assume without loss of generality 
that y0, y1 = 0, since we can express y by y = Su = SW (βu, 0, 0) + SW (0, y0, y1) =: yI + yH . Hence y − z̃ = yI − (z̃ − yH ). 
Now we can replace z̃ in the original cost-functional by z = z̃ − yH and simultaneously replace S : L2(0, T ; H) → L2(0, T ; H)

by SW (βu, 0, 0) arriving at

J (u) := 1

2
‖Su − z‖2

L2(0,T ;H) + α

2
‖u‖2

L2(0,T ;H). (2)

The Gateaux derivative J ′(u) is given by

J ′(u) = (
S∗S + α I

)
u − S∗z,

where I is the identity operator. Thus the first order necessary and sufficient optimality condition is given by the operator 
equation

Hu := (
S∗ S + α I

)
u = S∗z. (3)

Solving it efficiently will be in the focus of the further considerations.
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