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In this paper, several projection method based preconditioners for various incompressible 
flow models are studied. In the derivations of these projection method based pre-
conditioners, we use three different types of the approximations of the inverse of the 
Schur complement, i.e., the exact inverse, the Cahouet–Chabard type approximation and 
the BFBt type approximation. We illuminate the connections and the distinctions between 
these projection method based preconditioners and those related preconditioners. For 
the preconditioners using the Cahouet–Chabard type approximation, we show that the 
eigenvalues of the preconditioned systems have uniform bounds independent of the 
parameters and most of them are equal to 1. The analysis is based on a detailed discussion 
of the commutator difference operator. Moreover, these results demonstrate the stability 
of the staggered grid discretization and reveal the effects of the boundary treatment. 
To further illustrate the effectiveness of these projection method based preconditioners, 
numerical experiments are given to compare their performances with those of the related 
preconditioners. Generalizations of the projection method based preconditioners to other 
saddle point problems are also discussed.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider to solve the incompressible Stokes equations⎧⎨
⎩ ρ

∂u

∂t
− ∇ · (μ∇u) + ∇p = f in Ω,

−∇ · u = g in Ω,

(1)

subject to suitable boundary conditions on ∂Ω . Here, u(x, t) is the velocity, p(x, t) is the pressure, ρ is a constant density 
function, μ(x, t) is the viscosity, f may include an external force and the nonlinear term (u · ∇)u, g is 0 or a source term. 
For simplicity, we assume that g = 0 and μ is constant.

In the literature, there has been many methods for solving (1). In the original projection algorithm proposed by Chorin 
and Temam [7,38], the viscous term is treated explicitly. In some later developed projection methods, e.g. [21,32,33], the 
viscous term is solved implicitly and there is a correction term in the pressure updating step. The advantages of these 
projection algorithms exist in that the computations of the velocity and the pressure are decoupled into several Poisson 
solvers. Compared with these projection methods, many other methods couple the computations of u and p together. 
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However, coupled methods call for effective preconditioners for the resulted saddle point systems. In a recent work [13], 
the author proposed to use a pressure-correction projection method to be the preconditioner of the saddle point problem 
resulted from the coupled schemes for u and p. By taking the advantages of the projection method, it is shown that the 
preconditioner is effective and efficient [13]. However, we note that the preconditioner in [13] is restricted to the time de-
pendent Stokes case and the corresponding theoretical justification is absent. In this work, we have two aspects of interests. 
On one aspect, we will further explore the advantages of the projection method. On the other aspect, we will illuminate the 
connections and the distinctions between these projection method based preconditioners and those related preconditioners 
[3,2,10,19,23,25–27,31,29]. From our discussion, it will be found that the preconditioner used in [13] is closely related to 
the Cahouet–Chabard type approximation of the inverse of the Schur complement. In addition, motivated by the related 
works [10,27,19], we derive and study the other two pressure-correction projection method based preconditioners. Among 
them, one uses the exact inverse of the Schur complement, the other uses the BFBt type approximations of the inverse 
of the Schur complement [10]. We adopt a preconditioned GMRES method to solve the resulted saddle point systems. To 
gain the information of the convergence rate, we analyze the spectrum of the preconditioned system. The effectiveness, 
the advantages, the disadvantages of each preconditioner will also be discussed. In particular, we highlight the connections 
and distinctions between the projection method based preconditioners and other preconditioners. It is observed that if the 
Stokes model degenerates to the mixed form of an elliptic operator, all projection method based preconditioners recover the 
mixed form of the elliptic operator, no matter which type of boundary conditions is imposed. Furthermore, for the precon-
ditioners using the Cahouet–Chabard approximation, we have the following results: For both the steady and unsteady Stokes 
problems, it is shown that the preconditioned systems are well conditioned. More precisely, the nontrivial eigenvalues of 
the preconditioned systems have uniform lower and upper bounds which are independent of the mesh refinement and the 
physical parameters. Furthermore, the multiplicities of the non-unitary eigenvalues of the preconditioned system are derived 
based on a detailed analysis of the commutator difference operator. Specifically, for the two dimensional Stokes problems 
with Dirichlet boundary, if there are n cells along each direction, it is shown that there are at most 4(n − 1) eigenvalues not 
equal to 1. If the boundary conditions are periodic, the preconditioned operator is an identity operator. Compared with the 
existing works for the analysis of the Cahouet–Chabard preconditioner using the finite element discretization, e.g. [25,31,29], 
our analysis takes a different strategy (cf. Remark 2).

This paper is organized as follows. In Section 2, we present the time and spatial discretization, the boundary treatment, 
the projection method based preconditioners, the corresponding matrix representations, and the related preconditioners. In 
Section 3, eigenvalue analysis of the preconditioned systems is presented. In Section 4, numerical experiments are given 
to compare the performances of different preconditioners. In the last section, we discuss how to generalize the projection 
method based preconditioners to other saddle point problems or using other types of spatial discretizations.

2. Discretizations and preconditioners

2.1. Time and spatial discretizations

To have better stability and accuracy properties [14,28], an implicit time stepping scheme is adopted in this paper. We 
apply the following backward Euler scheme.⎧⎨

⎩
ρ

�t

(
uk+1 − uk) − ∇ · (μ∇uk+1) + ∇pk+1 = fk+1,

−∇ · uk+1 = 0.

(2)

Here, uk and pk are the approximate solution of u and p at t = k�t .
The staggered grid (i.e. marker-and-cell or MAC [16]) method is applied for the spatial discretization. In this work, 

we assume that the computational domain Ω is a two dimensional rectangle and there are nx and ny cells along the 
x-direction and the y-direction respectively. For simplicity, let us further assume that Ω = [0, 1]2 and hx = hy = h (and 
therefore nx = ny = n). To present the staggered grid discretization, we introduce the following sets.

Ω1 =
{((

i + 1

2

)
h, jh

)
: 0 ≤ i ≤ n,0 ≤ j ≤ n + 1

}
,

Ω2 =
{(

ih,

(
j + 1

2

)
h

)
: 0 ≤ i ≤ n + 1,0 ≤ j ≤ n

}
,

Ω3 = {
(ih, jh) : 1 ≤ i ≤ n,1 ≤ j ≤ n

}
.

As shown in Fig. 1, Ω1, Ω2 and Ω3 are the point sets for u, v and p respectively. The divergence of u = (u, v)T is 
approximated at cell centers by Du = Dxu + D y v with

(
Dxu

)
i, j = ui+1/2, j − ui−1/2, j

h
,

(
D y v

)
i, j = vi, j+1/2 − vi, j−1/2

h
.
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