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We present a new mesh simplification technique developed for a statistical analysis of 
a large data set distributed on a generic complex surface, topologically equivalent to a 
sphere. In particular, we focus on an application to cortical surface thickness data. The 
aim of this approach is to produce a simplified mesh which does not distort the original 
data distribution so that the statistical estimates computed over the new mesh exhibit
good inferential properties. To do this, we propose an iterative technique that, for each 
iteration, contracts the edge of the mesh with the lowest value of a cost function. This cost 
function takes into account both the geometry of the surface and the distribution of the 
data on it. After the data are associated with the simplified mesh, they are analyzed via 
a spatial regression model for non-planar domains. In particular, we resort to a penalized 
regression method that first conformally maps the simplified cortical surface mesh into 
a planar region. Then, existing planar spatial smoothing techniques are extended to non-
planar domains by suitably including the flattening phase. The effectiveness of the entire 
process is numerically demonstrated via a simulation study and an application to cortical 
surface thickness data.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper, we develop a technique to analyze large data sets lying on complicated two-dimensional manifolds. In 
particular, we are interested in analyzing data observed over the cortical surface of the brain, a two-dimensional manifold 
with many folds and creases, constituting the outermost part of the brain. The data of interest are the hemodynamic 
signals associated with neural activity on the cerebral cortex, or the measurements of the cerebral cortex thickness (i.e., 
the thickness of grey matter tissue). From a medical viewpoint, the study of these data is of relative importance to better 
understand brain functions and the underlying mechanics of brain diseases. For instance, the thickness of the cerebral cortex 
changes over time and is linked, in the medical literature, to the pathology of many neurological disorders such as autism, 
Alzheimer’s disease and schizophrenia [19]. Cortical surface data are obtained from reconstructions of the output of various 
types of magnetic resonance imaging (MRI) (see, e.g., [5]). Fig. 1 shows an example of thickness data studied in [4] and [3]. 
On the left, a cortical surface mesh is provided, while, on the right, we have the corresponding thickness measurements 
at each node of the mesh represented as a color map, obtained by linearly interpolating the measurements at the mesh 
nodes. Due to the folded nature of the cerebral cortex, the mesh generation process is a complex multistep procedure that 
results in a very large data set (often more than 106 nodes). Moreover, these data sets are usually characterized by noise in 
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Fig. 1. Example of a cortical thickness data set: a cortical surface mesh with 40 962 nodes (left); color map of the cortical thickness (right). The data and 
the Matlab code used to build the color map are available at http :/ /www.stat .wisc .edu /~mchung /softwares /hk /hk.html.

both the node locations and the data measurements. Advanced methods for modeling data spatially distributed over these 
manifolds are consequently required.

We propose an efficient technique to analyze large noisy data sets associated with triangular meshes of complicated 
non-planar geometries. To do this, we couple a mesh simplification technique with a spatial regression method for analyzing 
data on non-planar domains. The motivation for the simplification procedure is to reduce the computational effort associated 
with the statistical analysis of the large data sets that are typical in cortical surface applications. The proposed simplification 
procedure is designed specifically for producing a mesh that does not distort the original data distribution and is optimal 
for a statistical analysis of the data. In particular, through an iterative procedure, we take into account both the geometry 
of the mesh and the data distribution over it. The simplified geometry is generated in a way such that the analysis of the 
data associated with it should have statistical estimates with good inferential properties. For the data analysis, we resort to 
the Spatial Regression model for Non-Planar domains (SR-NP) developed in [9]. The SR-NP approach smooths the noisy data 
by minimizing a sum of squared error functional with a roughness penalty term involving the Laplace–Beltrami operator 
associated with the non-planar domain. The estimation problem on the surface is then appropriately recast over a planar 
domain via a conformal map. In the planar domain, existing spatial smoothing techniques are generalized by suitably taking 
into account the flattening of the domain. Notice that mapping to a planar domain would also allow for a statistical analysis 
across patients, similar to mapping to a reference brain [3]. In fact, via the SR-NP method, patient-specific estimates can all 
be mapped to a common planar domain where, after suitable registration among patients, comparisons across patients can 
be made. Nevertheless, the development of full inferential and uncertainty quantification tools for these population studies 
is outside the scope of this current paper. However, the mesh simplification proposed in this paper lays a foundation for 
these tools. The original application for the SR-NP method was modeling hemodynamic forces on the carotid artery (or on 
any manifold topologically equivalent to a cylinder). Since the cortical surface can be represented by a topological sphere, 
the conformal map has to be modified accordingly. To accomplish this, we implement a modified version of the conformal 
map suggested in [1]. The modification we introduce provides robust results when flattening some of the undesirable 
triangulations generated by the segmentation and extraction procedures [5].

Alternative approaches proposed in the literature chose different methods for containing the computational cost associ-
ated with the analysis of large cortical surface data sets. The nearest neighbor averaging technique developed in [12] is an 
iterative technique that smooths the variable of interest observed at each vertex of the mesh by suitably averaging this value 
with the ones observed at the neighboring vertices. The averaging process is repeated several times to create a smoothing 
effect. Although this technique is practical for smoothing data over the cortical surface, more sophisticated methods have 
been developed to build inferential tools that measure the uncertainty of the resulting estimates. For example, a recent 
method proposed in [19] identifies the mesh with a weighted graph. Then, the data associated with the mesh is smoothed 
by tuning the local support around each vertex of the graph via a graph Laplacian. Another example of a smoothing tech-
nique for neuroimaging applications is the Iterative Heat Kernel (IHK) smoothing introduced in [3]. This geodesic distance 
based kernel smoothing method solves the Laplace–Beltrami eigenvalue problem directly on the surface to construct a basis 
for the heat kernel on the cortical surface. Then, a finite number of these basis functions are used in the expansion of the 
heat kernel. In particular, a smoothing window is defined around each data point. The size of the smoothing window is 
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