
Applied Numerical Mathematics 90 (2015) 190–207

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Finite element methods for elliptic optimal control problems 

with boundary observations

Ming Yan a,∗, Wei Gong b, Ningning Yan c

a Research Center for Mathematics and Economics, Tianjin University of Finance and Economics, Tianjin 300222, China
b LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, 
China
c NCMIS, LSEC, Institute of Systems Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, 
China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2014
Received in revised form 24 August 2014
Accepted 3 November 2014
Available online 23 December 2014

Keywords:
A priori error estimates
Boundary observations
Finite elements
Mixed finite elements
Optimal control problems

We study in this paper the finite element approximations to elliptic optimal control 
problems with boundary observations. The main feature of this kind of optimal control 
problems is that the observations or measurements are the outward normal derivatives of 
the state variable on the boundary, this reduces the regularity of solutions to the optimal 
control problems. We propose two kinds of finite element methods: the standard FEM and 
the mixed FEM, to efficiently approximate the underlying optimal control problems. For 
both cases we derive a priori error estimates for problems posed on polygonal domains. 
Some numerical experiments are carried out at the end of the paper to support our 
theoretical findings.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following elliptic optimal control problems with boundary observations:

min
u∈Uad

J (y, u) = 1

2

∫
Γ

(∂nA y − zd)
2ds + α

2

∫
ΩU

u2dx (1.1)

subject to{−div(A∇ y) = f + Bu in Ω,

y = 0 on Γ,
(1.2)

where Ω ⊂ R
2 is an open bounded, convex domain with boundary Γ = ∂Ω , zd ∈ L2(Γ ) and f ∈ L2(Ω) are given functions 

which can be sufficiently smooth if needed, α > 0 is a regularization parameter, A is the coefficient matrix whose property 
will be stated later, ∂nA y is defined as A · ∇ y · n in which n is the outward normal vector on the boundary, ΩU ⊂ Ω is the 
sub-domain where the control acts, and B is the control operator defined as B : L2(ΩU ) → L2(Ω) which usually takes the 
form χΩU with χΩU the characteristic function of the sub-domain ΩU ⊂ Ω . We denote the set of admissible controls by
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Uad = {
u ∈ L2(ΩU ): a � u � b a.e. in ΩU

}
,

where a and b are real numbers.
There is a kind of inverse problems that aims to convert observed measurements into information about physical object 

or system, and the applications can be found in many branches, such as geophysics, medical imaging, astronomy and non-
destructive testing (see [3,29] for example). The problem studied in this paper comes from a specific inversion analysis in 
geo-technical engineering: the model is built to derive the body force when we can only measure the stress ∂nA y on the 
surface by using Jacking methods or surface relief methods (see, e.g., [1,25]). Here, we simplify the geo-technical system 
into an elliptic equation since they have similar properties in mathematical analysis.

Meanwhile, this problem can also be viewed as an elliptic optimal control problem with distributed control and obser-
vations on the boundary. We refer to [20,21,30] for an overview of optimal control problems. There have been extensive 
theoretical and numerical studies for finite element approximations of various optimal control problems. For instance, the 
error analysis for optimal control problems with distributed and boundary controls governed by linear elliptic equations has 
been established in [14,16]. A variational discretization concept was proposed by Hinze in [19]. A super-convergence prop-
erty of elliptic optimal control problems was exploited in [26] by a post-processing technique. A posteriori error estimates 
of residual type were also derived in, e.g., [22,23]. Some recent progress in this area has been summarized in [20,24].

As far as we know, there are only few papers concerning error analysis of elliptic optimal control problems with 
observations other than distributed ones. Here we should mention the work [11] which considered the finite element 
approximations of elliptic optimal control problems with point-wise observations and [27] which studied a parameter iden-
tification problems with point-wise measurements. In [5] the authors considered the boundary concentrated finite element 
method for Neumann boundary controls of elliptic equations with Dirichlet boundary observations. In this paper we intend 
to consider finite element approximations to elliptic optimal control problems with boundary observations. The main feature 
of this kind of optimal control problems is that the observations are the outward normal derivatives of the state variable on 
the boundary, this reduces the regularity of solutions to the optimal control problems.

From the maximum principle of the control problems it is easy to find the resemblance between the boundary obser-
vation problems and Dirichlet boundary control problems (see e.g., [9,13,17]). For Dirichlet boundary control problems the 
control acts as the Dirichlet boundary condition of the state equation. Thus, we need to deal with elliptic equations with 
inhomogeneous Dirichlet data belonging to only L2(Γ ), whose weak solution can only be understood in a very weak sense 
(see [4]). For the finite element approximation of Dirichlet boundary control problems one need to combine standard finite 
element method with boundary L2-projection to approximate the Dirichlet data. While for the boundary observation prob-
lems, the major difficulty comes from the fact that the adjoint state equation is an elliptic equation with inhomogeneous 
Dirichlet boundary condition whose value is the partial derivative of the state. Therefore, for the numerical approximation 
we can borrow some techniques of dealing with Dirichlet boundary control problems to analyze our problem.

In [9] Casas and Raymond considered semi-linear Dirichlet boundary control problems posed on polygonal domains and 
derived optimal a priori error estimate. Deckelnick, Günther and Hinze have studied the above problem posed on smooth 
domains in [13] and obtained some super-convergence results. The above mentioned papers are all based on the standard 
finite element method combining with L2-projection to deal with the inhomogeneous Dirichlet boundary condition. An 
alternative method based on mixed variational form was proposed in [17] to approximate the Dirichlet boundary control 
problems. The advantage of mixed variational form is that the essential boundary condition appears to be a natural one and 
it is easier for theoretical analysis and numerical realization.

To efficiently approximate the problems (1.1)–(1.2) we use two kinds of finite element methods mentioned above: the 
standard FEM and the mixed FEM, to approximate the state variable, while the control is discretized by variational dis-
cretization concept proposed in [19]. We derive a priori error estimates for both cases. The main result of this paper is as 
follows:

‖u − uh‖0,ΩU ≤ Ch, (1.3)

where u and uh are the continuous and discrete optimal controls by using the standard finite element or the mixed finite 
element approximations, where h is the mesh size of the triangulation. We remark that the above results hold under the 
additional stronger assumptions that Ω = ΩU and f ∈ H1(Ω) in the case of the mixed finite element approximation. We 
can observe from the numerical experiments that the standard FEM outperforms the mixed FEM both in computational 
complexity and accuracy, especially for problems with smooth solutions. However, the mixed FEM provides an option to 
solve optimal control problems with inhomogeneous Dirichlet boundary conditions or with gradient information in the 
objective functional. Moreover, for possible extension to practical problems with governing equations of the form of linear 
elasticity systems, the mixed FEM is more robust compared to the standard FEM when the compliance tensor becomes 
singular (see [2]).

The novelty of our paper compared to the previous ones is twofold. First, the control problem discussed in this paper 
has special structure of the objective functional which consists of an observation term for the outward normal derivative 
of the state on the boundary. This is the first paper which deals with such problem as far as we know. Second, the low 
regularity of the problem brings some difficulties to the error estimation, especially when the state and adjoint state are 
both approximated by piecewise linear continuous functions. We remark that although we borrow some techniques from 
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