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We present an explicit and efficient way for constructing finite elements with assigned 
gradient, or curl, or divergence. Some simple notions of homology theory and graph theory 
applied to the finite element mesh are basic tools for devising the solution algorithms.
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1. Introduction

Determining the necessary and sufficient conditions for assuring that a vector field defined in a bounded and sufficiently 
smooth three-dimensional domain Ω is the gradient of a scalar potential or the curl of a vector potential is one of the most 
classical problems of vector analysis.

The answer is well-known, and shows an interesting interplay of differential calculus and topology (see, e.g., Cantarella 
et al. [3]):

• a vector field is the gradient of a scalar potential if and only if it is curl-free and its line integral is vanishing on all the 
closed curves that give a basis of the first homology group of Ω ;

• a vector field is the curl of a vector potential if and only if it is divergence-free and its flux is vanishing across (all but 
one) the connected components of ∂Ω .

Less interesting is the problem of finding a vector field with assigned divergence f : this problem is very simply solved 
by taking the gradient of the solution ϕ of the elliptic problem �ϕ = f in Ω , ϕ vanishing on the boundary ∂Ω; no 
compatibility conditions on f are needed, no topological properties of Ω come into play.

However, a less clarified situation takes shape when, given a suitable finite element vector field, we want to furnish an 
explicit and efficient procedure for constructing its finite element scalar potential and vector potential. Note also that at 
this level the construction of a finite element vector field with an assigned divergence comes back on the table: in fact, 
the gradient of a (standard) finite element approximate solution of �ϕ = f has a distributional divergence which is not a 
function, and therefore this divergence cannot be equal to an assigned finite element.

The aim of this paper is to furnish a simple and efficient way for constructing finite elements with assigned gradient, or 
curl, or divergence. Clearly, in numerical computations this is important any time one has to reduce a given problem to an 
associated one with vanishing data.
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It is worth noting that the computational cost of all the algorithms we propose depends linearly on the number of 
unknowns.

2. Notation and preliminary results

Let Ω be a bounded polyhedral domain of R3 with Lipschitz boundary and let (∂Ω)0, . . . , (∂Ω)p be the connected 
components of ∂Ω . Consider a tetrahedral triangulation Th = (V , E, F , T ) of Ω . Here V is the set of vertices, E the set of 
edges, F the set of faces and T the set of tetrahedra in Th .

We consider the following spaces of finite elements (for a complete presentation, see Monk [7]). The space Lh of con-
tinuous piecewise-linear finite elements; its dimension is nv , the number of vertices in Th . The space Nh of Nédélec edge 
elements of degree 1; its dimension is ne , the number of edges in Th . The space RTh of Raviart–Thomas finite elements of 
degree 1; its dimension is n f , the number of faces in Th . The space PCh of piecewise-constant elements; its dimension is 
nt , the number of tetrahedra in Th .

It is well-known that Lh ⊂ H1(Ω), Nh ⊂ H(curl; Ω), RTh ⊂ H(div; Ω) and PCh ⊂ L2(Ω), where

H1(Ω) = {
φ ∈ L2(Ω)

∣∣ gradφ ∈ (
L2(Ω)

)3}
,

H(curl;Ω) = {
v ∈ (

L2(Ω)
)3 ∣∣ curl v ∈ (

L2(Ω)
)3}

,

H(div;Ω) = {
v ∈ (

L2(Ω)
)3 ∣∣ div v ∈ L2(Ω)

}
.

Moreover grad Lh ⊂ Nh , curl Nh ⊂ RTh and div RTh ⊂ P Ch .
Fix a total ordering v1, . . . , vnv of the elements of V . This induces an orientation on the elements of E , F and T : if the 

end points of e j are va and vb for some a, b ∈ {1, . . . , nv} with a < b, then the oriented edge e j is denoted by [va, vb], and 
therefore the unit tangent vector of e j is given by τ = vb−va

|vb−va | . On the other hand, if the face f has vertices va , vb and vc

with a < b < c, the oriented face f is denoted by [va, vb, vc] and its unit normal vector ν is obtained by the right hand 
rule. Finally, if the tetrahedron t has vertices va , vb , vc and vd with a < b < c < d, the oriented tetrahedron f is denoted by 
[va, vb, vc, vd].

Let us consider a basis of Lh , {Φh,1, . . . , Φh,nv }, such that

Φh,i(v j) = δi, j

for 1 ≤ i, j ≤ nv , a basis of Nh , {wh,1, . . . wh,ne }, such that∫
e j

wh,i · τ = δi, j

for 1 ≤ i, j ≤ ne , a basis of RTh , {rh,1, . . . rh,n f }, such that∫
f j

rh,i · ν = δi, j

for 1 ≤ i, j ≤ n f , and the basis of P Ch , {gh,1, . . . gh,nt }, given by the characteristic functions of the tetrahedron ti .
In the following we introduce some notions of homology theory (see, e.g., Munkres [8]). We start from the mesh Th =

(V , E, F , T ) on Ω , having assigned the orientation to the edges and faces as explained before. The basic concept is that of 
chain: a 2-chain is a formal linear combination of oriented faces, a 1-chain is a formal linear combination of oriented edges, 
and a 0-chain is a formal linear combination of vertices, in all cases taking the coefficients in Z. We denote by Ck(Th, Z)

the set of all the k-chains in Th , k = 0, 1, 2.
Now we can define the boundary operator ∂k : Ck(Th, Z) → Ck−1(Th, Z) for k = 1, 2. For the oriented face f =

[va0 , va1 , va2 ] we have

∂2 f := [va1 , va2 ] − [va0 , va2 ] + [va0 , va1 ].
Analogously for the oriented edge e = [va, vb] we have

∂1e := vb − va.

We extend the definition of the boundary operator to chains by linearity.
A 1-chain c of Th is a 1-cycle if ∂1c = 0, and is a 1-boundary if there exists a 2-chain C such that ∂2C = c. Notice that 

all 1-boundaries are 1-cycles but, in general, not all 1-cycles are 1-boundaries.
Let us denote by Z1(Th, Z) the set of 1-cycles, Z1(Th, Z) := ker(∂1), and B1(Th, Z) the set of 1-boundaries, B1(Th, Z) :=

im(∂2). Two 1-cycles c and c′ are called homologous in Th if c − c′ is a 1-boundary in Th . If c is homologous to the trivial 
1-cycle (namely, it is a 1-boundary), then we say that c bounds in Th .
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