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We consider an elliptic distributed optimal control problem with state constraints and 
compare three post-processing procedures that compute approximations of the optimal 
control from the approximation of the optimal state obtained by a quadratic C0 interior 
penalty method.
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1. Introduction

Let � ⊆ R
2 be a bounded convex polygonal domain, yd ∈ L2(�) and β be a positive number. We consider a model 

elliptic distributed optimal control problem with pointwise state constraints (cf. [15]):

minimize J (y, u) = 1

2

∫
�

(y − yd)
2 dx + β

2

∫
�

u2 dx

over (y, u) ∈ H1
0(�) × L2(�)

subject to

{
−�y = u in �

y ≤ ψ a.e. in �
(1.1)

We assume that ψ ∈ C2(�̄) and ψ > 0 on ∂�. Here and below we will follow standard notation for differential operators 
and Sobolev spaces that can be found for example in [17,9].

Since � is convex, it follows from the elliptic regularity theory [25,18,35] that the state y belongs to H2(�) ∩ H1
0(�) and 

hence, by replacing the control u with −�y in (1.1), we can instead look for the minimizer of the reduced functional

G(y) = 1

2

∫
�

(y − yd)
2 dx + β

2

∫
�

(�y)2 dx

in the closed convex set K = {y ∈ H2(�) ∩ H1
0(�) : y ≤ ψ in �}.
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Note that [26, Theorem 2.2.1]∫
�

(�v)(�w)dx =
∫
�

(D2 v : D2 w)dx ∀ v, w ∈ H2(�) ∩ H1
0(�),

where D2 v : D2 w = ∑2
i, j=1 vxi x j wxi x j is the inner product of the Hessian matrices of v and w . Therefore, after a simple 

manipulation, we have the following equivalent minimization problem:

Find ȳ = argmin
y∈K

[
1

2
A(y, y) − (yd, y)

]
, (1.2)

where (·, ·) is the inner product of L2(�) and

A(v, w) =
∫
�

[β(D2 v : D2 w) + v w]dx. (1.3)

Since the symmetric bilinear form A(·, ·) is coercive on H2(�) ∩ H1
0(�) by a Poincaré–Friderichs inequality [36] and K

is a closed convex subset of H2(�) ∩ H1
0(�) by the Sobolev inequality [1], it follows from the standard theory [32,29,38,23]

that (1.2) has a unique solution characterized by the fourth order variational inequality

A( ȳ, y − ȳ) ≥ (yd, y − ȳ) ∀ y ∈ K . (1.4)

According to the regularity results in [21,22,14], the solution ȳ of (1.2) belongs to C2(�) ∩ H3
loc(�). On the other hand, 

since the state constraint is inactive near ∂� because ψ > 0 on ∂�, the variational inequality (1.4) becomes an equality 
near ∂�. Therefore the regularity of ȳ near ∂� is determined by the elliptic regularity of the biharmonic equation with the 
boundary conditions of simply supported plates (cf. [4] and [13, Appendix A]). Hence ȳ belongs to H2+α in a neighborhood 
of ∂�, where the elliptic regularity index α ∈ (0, 2] is determined by the interior angles of �. However ū = −� ȳ belongs 
to H1

0(�) since the singularities of ȳ at the corners of � are harmonic functions.
We can rewrite the variational inequality (1.4) in an equivalent form by using a Lagrange multiplier:

A( ȳ, y) = (yd, y) −
∫
�

y dλ̄ ∀ y ∈ H2(�) ∩ H1
0(�), (1.5a)

∫
�

(ψ − ȳ)dλ̄ = 0, (1.5b)

where λ̄ is a nonnegative finite Borel measure.
The fact that the Lagrange multiplier λ̄ is a measure and not a function in L2(�) complicates the analysis of finite 

element methods for (1.2)–(1.4) considerably. Following the ideas introduced in [12,11] for the obstacle problem of clamped 
Kirchhoff plates, a quadratic C0 interior penalty method for (1.2)–(1.4) was investigated in [13], where it was shown, without 
using (1.5), that the error for the approximation of the optimal state ȳ in an H2-like energy norm is O (hα) on quasi-uniform 
meshes and O (h) on properly graded meshes, where h represents the mesh size.

In this paper we will compare three post-processing procedures that compute approximations of the optimal control 
ū = −� ȳ from the approximation of ȳ obtained by the quadratic C0 interior penalty method. The first procedure is based 
on numerical differentiation, the second procedure involves numerical differentiation and averaging, and the third procedure 
involves numerical differentiation and smoothing. We will demonstrate that even though the a priori L2 error estimates for 
the approximate optimal controls generated by all three procedures are of the same magnitude as the error for the optimal 
state in the energy norm, in practice the second procedure performs better than the first one and the third procedure 
performs better than the second one. In particular the convergence of the approximate optimal control in the H1 norm is 
observed for the third procedure even on domains with singular corners.

The rest of the paper is organized as follows. In Section 2 we review the quadratic C0 interior penalty method and 
introduce the post-processing procedures. Since two of the procedures have been analyzed previously, we will focus on the 
analysis of the third procedure, which is carried out in Section 3. Numerical results that compare the performance of the 
post-processing procedures are reported in Section 4. We end the paper with some concluding remarks in Section 5.

Throughout the paper we will use C to denote a generic positive constant independent of the mesh size h that can take 
different values at different occurrences.

Remark 1.1. The reformulation of optimal control problems as fourth order variational inequalities is well-known in the 
literature (cf. for example [3,33,24,37]). The novelty of our approach is in the analysis, which shows that essentially all finite 
element methods that work for the boundary value problems of Kirchhoff plates also work for the variational inequalities, 
without assuming additional conditions on the free boundary. It would be interesting to find out whether our approach can 
be extended to optimal control problems with both state and control constraints that have been investigated in [34,28,16,
30,39] by classical approaches.
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