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We develop a parallel solver for the cardiac electro-mechanical coupling. The electric 
model consists of two non-linear parabolic partial differential equations (PDEs), the so-
called Bidomain model, which describes the spread of the electric impulse in the heart 
muscle. The two PDEs are coupled with a non-linear elastic model, where the myocardium 
is considered as a nearly-incompressible transversely isotropic hyperelastic material. The 
discretization of the whole electro-mechanical model is performed by Q1 finite elements 
in space and a semi-implicit finite difference scheme in time. This approximation strategy 
yields at each time step the solution of a large scale ill-conditioned linear system deriving 
from the discretization of the Bidomain model and a non-linear system deriving from 
the discretization of the finite elasticity model. The parallel solver developed consists 
of solving the linear system with the Conjugate Gradient method, preconditioned by 
a Multilevel Schwarz preconditioner, and the non-linear system with a Newton–Krylov-
Algebraic Multigrid solver. Three-dimensional parallel numerical tests on a Linux cluster 
show that the parallel solver proposed is scalable and robust with respect to the domain 
deformations induced by the cardiac contraction.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We develop a parallel solver based on algebraic multigrid and multilevel Schwarz methods for the solution of the cardiac 
electro-mechanical coupling model. This model consists of the Bidomain equations (electrical model), a degenerate system 
of parabolic partial differential equations modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical 
model, describing the contraction and relaxation of the cardiac muscle during a heart beat.

The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because 
the space and time scales associated with the electrical and mechanical models are very different. The discretization of the 
model by finite elements in space and semi-implicit finite difference splitting methods in time yields at each time step 
the solution of a large ill-conditioned linear system, deriving from the discretization of the Bidomain equations, and of a 
non-linear system, deriving from the discretization of the non-linear elasticity equations.

Many studies have been devoted to the development of efficient solvers and preconditioners for the Bidomain model, see 
e.g. [8,13,30,32,44,31,40,54,41,42,58,62,63] and the surveys [38,60], but the robustness of these methods with respect to the 
domain deformation induced by the mechanical feedback has not been demonstrated yet. In the last years, several works 
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have been devoted to the development of models for the mechanical cardiac contraction and to the numerical simulations 
of the electro-mechanical coupling models, see e.g. [21,24,12,23,36,37,49,34,55]. A few studies have focused on the devel-
opment of efficient solvers for the quasi-static mechanical model, see [36,59] for a parallel GMRES solver and [25,24,23] for 
parallel direct solvers. The majority of cardiac mechanics simulation studies have used very coarse mechanical meshes in 
comparison with the standard electrical meshes. Thus, the solution of the quasi-static nonlinear mechanical model is per-
formed solving the linear Jacobian system by direct methods, at each Newton iteration. However, in the recent paper [37], 
it has been shown that, when complex active tension development models are used, stability issues may arise in case of 
too coarse mechanical meshes, and fine meshes are needed also for the mechanical model.

The first aim of the present paper is to study the scalability and robustness, with respect to mechanically induced 
domain deformations, of Multilevel Schwarz methods for the Bidomain system. The second aim is to study the scalability 
of Algebraic Multigrid preconditioners for the linear Jacobian system arising at each Newton iteration during the solution of 
the non-linear elasticity equations in the mechanical model.

2. Mathematical models

2.1. Mechanical model

Let us denote the material coordinates of the undeformed or reference cardiac domain by X = (X1, X2, X3)
T , the spatial 

coordinates of the deformed cardiac domain by x = (x1, x2, x3)
T and the region occupied by the undeformed and deformed, 

at time t , cardiac domains by Ω̂ and Ω(t), respectively. We denote by Div and div (Grad and grad) the material and spatial 
divergence (gradient) of a vector (scalar), respectively. From a mechanical point of view, the cardiac tissue is modeled as a 
non-linear elastic material. The deformation gradient tensor F and its determinant are given by

F(X, t) = {Fij} =
{

∂xi

∂ X j
i, j = 1,2,3

}
, J (X, t) = det F(X, t).

The Cauchy–Green deformation tensor C and Lagrange–Green strain tensor E are

C = FT F and E = 1

2
(C − I),

where I denotes the identity matrix.
We first assume that the time-dependent inertial term in the governing elastic wave equation may be neglected, see 

e.g. [24,26,27,33,61,6]. Thus, the quasi-static Cauchy’s equation of equilibrium, without body force, in term of the Cauchy 
stress tensor σ is given by divσ = 0, in Ω(t) and in the coordinates of the deformed body satisfy the steady-state force 
equilibrium equation

Div(FS) = 0, X ∈ Ω̂, (1)

where S = {si j} = J F−1σF−T is the second Piola–Kirchoff stress tensor. The tensor S is given by the sum of a passive elastic 
component Spas and a biochemically generated active component Sact , i.e. S = Spas + Sact , as done in many previous studies, 
see e.g. [22,59,27]. An alternative multiplicative strategy for combining the passive Spas and active Sact components has been 
recently proposed in [7], see also [2,36,48].

The passive component Spas is computed from a suitable strain energy function W and the Green–Lagrange strain E

Spas
i j = 1

2

(
∂W

∂ Eij
+ ∂W

∂ E ji

)
i, j = 1,2,3. (2)

A wide variety of strain energy functions W have been proposed and adopted in the literature, see e.g. [11,14,15,18,33,45,
49,52,57]. We recall that the cardiac tissue consists of an arrangement of fibers that rotate counterclockwise from epi- to 
endocardium, and that have a laminar organization modeled as a set of muscle sheets running radially from epi- to endo-
cardium, e.g. [28,57]. In this paper, we choose to model the myocardium as a transversely isotropic hyperelastic material, 
with the exponential strain energy function [59]

W = 1

2
c
(
eQ − 1

)
,

Q = bll E
2
ll + btn

(
E2

nn + E2
tt + 2E2

nt

) + 2blt
(

E2
lt + E2

ln

)
, (3)

where the Lagrange–Green strain tensor is referred to the orthogonal local fiber coordinate system, consisting of the fiber 
direction (l), and two others orthogonal cross fiber directions. The material constant c scales the stress, bll and btn scale 
the material stiffness in the fiber and the two cross fiber directions, and blt scales the material rigidity under shear in the 
fiber-transverse plane.

The myocardium is modeled as nearly-incompressible material and, following [59], we add a bulk modulus K multiplying 
a volume change penalization term into the strain energy

W = 1

2
c
(
eQ − 1

) + K
(√

det(C) − 1
)2

. (4)
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