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This paper investigates the pricing of American options under the finite moment log-stable 
(FMLS) model. Under the FMLS model, the price of American-style options is governed 
by a highly nonlinear fractional partial differential equation (FPDE) system, which is 
much more complicated to solve than the corresponding Black–Scholes (B–S) system, with 
difficulties arising from the semi-globalness of the fractional operator, in conjunction with 
the nonlinearity associated with the early exercise nature of American-style options. Albeit 
difficult, in this paper, we propose a new predictor–corrector scheme based on the spectral-
collocation method to solve for the prices of American options under the FMLS model. In 
the current approach, the nonlinearity of the pricing system is successfully dealt with using 
the predictor–corrector framework, whereas the non-localness of the fractional operator 
is elegantly handled. We have also provided an elegant error analysis for the current 
approach. Various numerical experiments suggest that the current method is fast and 
efficient, and can be easily extended to price American-style options under other fractional 
diffusion models. Based on the numerical results, we have also examined quantitatively the 
influence of the tail index on American put options.

© 2015 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

As is well known, one of the major topics in today’s quantitative finance research is the valuation of option derivatives. 
For quite a long time, it has been widely acknowledged that pricing American options is a much more intriguing problem 
[12,13,15], with challenge mainly stemming from the nonlinearity originated from the inherent characteristic that an Amer-
ican option can be exercised at any time during its lifespan. This additional right of being able to exercise the option early, 
in comparison with a European option, casts the American option pricing problem into a free boundary problem, which is 
highly nonlinear and far more difficult to deal with. Since most traded stock and commodity options in today’s financial 
markets are of American style, it is important to ensure that American-style securities can be priced accurately as well as 
efficiently.

In the literature, the pricing of American options has been well documented, but most of them are discussed under 
the commonly used Black–Scholes (B–S) model. Empirical evidence has, however, suggested that the B–S model usually 
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underestimates the probability of underlying price moving significantly over small time steps [3]. For example, when ana-
lyzing the S&P 500 data, a “leptokurtic distribution” is observed, which has a higher peak and two heavier tails than those 
of the normal distribution [3]. To incorporate the leptokurtic feature observed in financial markets, the Lévy process is in-
troduced, which is a vast class including the standard Brownian motion, Poisson process and compound Poisson processes 
as its simplest forms. In addition to the fat tails they have, Lévy distributions allow for long jumps as well, which are 
frequently observed in stock markets [3].

Among all the Lévy processes, the maximally skewed Lévy stable (LS) process introduced in [3] has received a great 
attention, due to its financial and mathematical superiorities. This special Lévy process gives rise to an interesting financial 
model known as the finite moment log-stable (FMLS) model [3], which is also adopted in the current work. Empirical 
evidence suggests that this model can not only successfully capture the high-frequency empirical probability distribution 
of the S&P 500 data, but also fit simultaneously volatility smirks at different maturities [3]. Most importantly, in contrast 
to many other models driven by different Lévy processes, the FMLS model guarantees that all moments of the underlying 
index levels are finite, which are needed for the existence of an equivalent martingale measure and finite option values [3].

Mathematically, to characterize the non-localness induced by the pure jumps under the FMLS model, a fractional partial 
differential equation (FPDE) needs to be solved, which is a subset of the class of pseudo-differential equations. We remark 
that this new FPDE system is similar to the corresponding B–S system, but with the second-order spatial derivative replaced 
by an α-order spatial derivative, where α is any real number belonging to (1, 2]. The non-local nature of the factional 
operator in fact weights information of the portfolio over a range of underlying values rather than narrowly focusing on 
some localized information. Financially, this reflects the fact that over a time step �t , the underlying price St can diffuse 
and/or jump to value St+�t far away from St , making the use of localized information of the portfolio at St less relevant.

Albeit important, the application of fractional calculus to the quantitative finance area is very much in its infancy stage, 
due to the difficulty in dealing with the non-local nature of the fractional operator. For instance, Cartea [4] showed that 
hedging strategies can be substantially improved once fractional operators are adopted. Wyss [22] considered the pricing of 
option derivatives under a modified B–S equation with a time-fractional derivative, and derived a closed-form solution for 
European vanilla options. Regarding the option pricing under the FMLS model, Carr and Wu [3] introduced this model to the 
literature, and showed its superior performance against several widely used alternatives. Cartea and del-Castillo-Negrete [5]
considered the pricing of barrier options under the FMLS model purely numerically, by using a finite difference method. 
Recently, Chen et al. [9] derived closed-form analytical solutions for European-style options under the same model, and 
analyzed quantitatively the impact of different tail indexes. It should be remarked that under the fractional diffusion frame-
work, the literature has been restricted to the pricing of European-style options only. The pricing of American-style options, 
which is the main concern of today’s financial industry, is much more complicated than the one under the B–S model, with 
the additional difficulty arising from the non-localness of the fractional operator. To the best of the authors’ knowledge, this 
important issue has only been considered recently in [7,8], although quite a lot of work has been done for American options 
under normal diffusion processes [26–28].

In this paper, an efficient numerical scheme for the pricing of American options under the FMLS model is proposed. Our 
approach is very much based on the predictor–corrector framework, which is commonly used to numerically solve nonlinear 
PDEs. The idea behind the predictor–corrector method is to use a suitable combination of an explicit and implicit technique 
to obtain a method with better convergence characteristics. Previously, this method has been applied to the pricing of 
American options under the normal diffusion frameworks only, such as the B–S model [28], and the stochastic volatility 
model [26]. The purpose of this article is to introduce a new predictor–corrector scheme based on the spectral-collocation 
method, which is suitable for not only the FMLS model, but also various models driven by different fractional diffusion 
processes. Due to the highly nonlinear nature of the pricing of American options, it is never an easy task to do any numerical 
analysis for the current approach. Nevertheless, by using error splitting, we still have managed to provide an elegant error 
analysis for our predictor–corrector approach. It is found that the convergence rate depends on the regularity of the solution, 
which is the nature of the spectral-collocation method.

In the subsequent sections, we shall present this new approach together with several numerical results for American 
puts under the FMLS model. The paper is organized as follows: In Section 2, we introduce the FPDE system that the price 
of an American put must satisfy under the FMLS model. In Section 3, we present our predictor–corrector approach in detail. 
In Section 4, the error analysis for the current method is provided. In Section 5, numerical examples together with some 
useful discussions are presented to demonstrate the convergence, efficiency and accuracy of the current scheme. Concluding 
remarks are given in the last subsection.

2. American options under the FMLS model

Under the risk neutral measure Q, the FMLS model assumes that the log value of the underlying i.e., x̄t = ln St , with 
dividend yield D follows a stochastic differential equation of the maximally skewed LS process:

dx̄t = (r − D − ν)dt + σdLα,−1
t , (2.1)

where r and D are the risk free interest and the dividend yield, respectively. t is the current time, and ν = σα sec
απ

2
is a convexity adjustment. Lα,−1

t denotes the maximally skewed LS process, which is a special case of the Lévy-α-stable 
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