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In this paper we consider the solid–solid phase transformation in martensitic materials 
and present two numerical procedures for solving exactly the Riemann problems of a 3 × 3
system of conservation laws [21]. A particular attention is given to the configurations of 
the phase boundaries. For a Riemann problem whose initial states are specified in different 
phases, we first assume that the phase boundary is stationary and then find the solution 
through an iteration method [24]. Configuration of the transition front is then determined 
based on this stationary-phase-boundary solution [12]. The solution with dynamic phase 
change is calculated by listing all the relations in the Riemann problem and solving the 
resulting nonlinear system. Another approach, which avoids solving this system, is also 
proposed where the solution is obtained by computing the intersection of two projection 
curves. A front capturing/tracking method [25] implementing these Riemann solvers is 
presented to approximate initial value problems with propagating transition fronts. This 
approach captures the phase boundary sharply without artificial smearing in the physically 
unstable region.

© 2015 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Systems of conservation laws can be used to model phase transition problems. Examples include compressible multiphase 
flows as well as crystalline solids, such as shape-memory alloys, that admit more than one phases. In a phase transition 
problem, stress is not a monotonically increasing function of strain. The system becomes elliptic in the region where the 
stress-strain function decreases. We assume that this region is physically unstable hence the system is essentially hyperbolic.

In this work we consider a martensitic phase transition problem for longitudinal deformation of homogeneous bar with 
unit cross section [21]. The low-strain state and high-strain state of the material are also called α-phase and β-phase, 
respectively. The latent heat is nonzero and the phase boundary propagates slower than a shock or a rarefaction wave. Let 
u(x, t) represent displacement of a reference point x at t , w = ux is strain and v = ut is the particle velocity. The standard 
balance of mass, linear momentum and energy for adiabatic motions take the form
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wt − vx = 0,

vt − σx = 0,

Et − (σ v)x = 0,

(1)

where t ≥ 0, −∞ < x < ∞. σ and E are stress and total energy, respectively. E = e + v2/2, where e(w, s) is the specific 
internal energy (s is the specific entropy) and

σ = ew(w, s).

When σw(w, s) > 0, the system (1) is hyperbolic with three characteristic speeds

λ = {−√
σw ,0,

√
σw

}
.

When no phase transition occurs, the solution of the Riemann problem contains a backward wave, a contact discontinuity 
and a forward wave corresponding to the three characteristic families. The stress-strain relation is given by [21]

σ(w, T ) = A + BT + K (w − wa)(w − wb)(w − 1

2
(wb + wa)), (2)

where constants A, B , K , wa and wb satisfy that A > 0, B > 0, K > 0 and wb > wa ≥ 0. We assume that the specific heat c
is constant and the Helmholtz free energy is written as

f (w, T ) = Aw + BT w + Kψ(w) − cT ln
T

T0
, (3)

where

ψ(w) = w4

4
− 1

2
(wa + wb)w3 + 1

2
w2

(
w2

a

2
+ 2wa wb + w2

b

2

)
− wa wb

(
wa + wb

2

)
w,

such that

ψ ′(w) = (w − wa)(w − wb)(w − 1

2
(wb + wa)).

The entropy is

s(w, T ) = −B w + c ln
T

T0
+ c.

Solve for T to obtain that

T = T0 exp

(
s + B w − c

c

)
,

and plug it into (2) to see that

σ = A + BT0 exp

(
s + B w − c

c

)
+ K (w − wa)(w − wb)(w − 1

2
(wb + wa)). (4)

By setting σ = σ0, we have the entropy-strain relation at constant stress as

s = −B w + c

{
1 + ln

1

BT0

[
σ0 − A − K (w − wa)(w − wb)(w − 1

2
(wb + wa))

]}
. (5)

The internal energy is given by

e = f + T s

= Aw + Kψ(w) + cT0 exp

(
s + B w − c

c

)
. (6)

It is easy to verify the thermodynamic relation that

de = σdw + T ds, (7)

i.e., σ = ew and T = es .
In order to pick out the physically relevant solution, we need an entropy condition which imposes that the entropy 

increases across jump discontinuities. Let

F = D(s+ − s−), (8)
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