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We consider the problem of evaluating 
∫ 1
−1 f (x)G(x)(1 − x2)−1/2dx, when f is smooth and 

G is nearly singular and non-negative. For this we construct a Gauss quadrature formula 
w.r.t. the weight G(x)(1 − x2)−1/2. Once the factor G has been chosen, the procedure is 
relatively simple and mainly involves the application of FFT to compute a finite number 
of coefficients of the Chebyshev series expansion of G which in turn are used to calculate 
modified moments.
It is shown that this approach is very effective when the complexity of f is high, or when 
f is parametric and the integral must be calculated for many values of the parameters. For 
this, there is presented a selection of numerical examples which allows comparison with 
other methods. In particular, there is considered the evaluation of Hadamard finite part 
integrals when the regular part of the integrand is nearly singular.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over the last decades a great variety of boundary problems have been reformulated as boundary integral equations 
involving nearly singular and strongly singular integrals which cannot be computed accurately using ordinary quadrature 
rules. Some of these problems have been established in terms of multiple integrals whose study can be carried out by con-
sidering the one-dimensional case (cf. [1,2,14,18]). The latter is the issue to which we refer in this article. For convenience 
and without loss of generality, in what follows all integrals are defined over the interval [−1, 1].

Let IW (F ) = ∫ 1
−1 F (x)W (x) dx, where F is the integrand and W is a weight function. It is most likely that IW (p) is used 

to approximate IW (F ), where p is the polynomial of degree n − 1, that interpolates F at n distinct points of [−1, 1]. Once 
the corresponding quadrature formula has been calculated, the weight W is usually fixed, whereas F varies freely in a 
given class. Unfortunately, in many cases, F has a nature that does not favor the use of digital resources. This phenomenon 
manifests when F has a meromorphic component having difficult poles, i.e. poles located very close to [−1, 1], or when the 
scale of F is influenced by a factor that varies exponentially (cf. [22]). In cases like these, it is commonly said that F is 
nearly singular, but here we also say that F is a difficult function. The adjective smooth is used when referring to functions 
that are considered as non-difficult.2
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If F shows difficult behavior, then the following step is to write F as the product of two factors, say F = fG, where f
is no longer difficult, and G is a non-negative function. Thus, f is now integrated w.r.t. GW . If the issue is due to algebraic 
singularities of the integrand, e.g. when F is meromorphic on a neighborhood of [−1, 1], then one can select f = q0 F and 
G = 1/q0, where q0 is a polynomial whose zeros coincide with difficult poles of F . This approach based on rational functions 
has been studied by many authors, among whom W. Gautschi is probably the most cited (see, for example, [7–13,22]). In 
addition to Gautschi’s work, different techniques have been developed to handle difficult poles (cf. [6,13]). As far we know, 
all these methods are often costly, because they depend largely on features of the integrand and, in most cases, expert 
judgment is needed.

If f is meromorphic and G is poorly scaled but not related to difficult poles, then it is indicated the use of Gauss formulas 
for weights of the form GW/q0. This hint appears without any technical treatment in [11]. On the other hand, following the 
ideas of Clenshaw and Curtis [5], it has been shown recently that the coefficients of the interpolatory quadrature formula 
w.r.t. GW , can be calculated with great precision when G is replaced by its Chebyshev series expansion (cf. [3]). Despite 
[11], we are only interested in examine the case in which q0 ≡ 1 and G can also possess difficult poles, if any. The reason 
for this is to avoid the calculation of residues, a problem which is often ill conditioned.

The goal of this paper is to present a method to evaluate efficiently the integral IGW ( f ), when W is the Chebyshev weight 
function of the first kind and G is nearly singular. For this, we show how to calculate accurately nodes and coefficients of 
the Gauss quadrature formula associated with GW . The calculation process is mainly based on using the modified Chebyshev 
method and Fast Fourier Transform (FFT). As a consequence, we can integrate a wide variety of difficult functions, at a cost 
that may be relatively low when either the complexity of f is high or f depends on some parameters.

The remainder of this article is organized as follows.
Section 2 describes the implementation of this approach, in particular, the calculation of modified moments. Some nu-

merical examples are listed in Section 3 in order to verify the accuracy of the proposed method, and also to complement 
the explanation given in the previous section.

Sections 4 and 5 show some cases in which our approach is particularly effective. Section 4 suggests how to choose the 
weight function to evaluate Hadamard finite-part integrals, while the main target of Section 5 is the analysis of complexity. 
Some concluding remarks are given in Section 6.

2. Description of the numerical procedure

2.1. Preliminaries and statement of the quadrature formula

Let ω(x) be a nonnegative function on the real interval [c, d], such that all moments Mν = ∫ d
c xνω(x)dx, ν = 0, 1, 2, . . . , 

are finite and M0 > 0. Let Π be the space of real polynomials and Πn the subspace of polynomials of degree ≤n. The inner 
product associated with ω is defined as

〈P1, P2〉ω =
d∫

c

P1(x)P2(x)ω(x)dx, P1, P2 ∈ Π.

Suppose that this inner product is positive definite on Π , i.e. ‖P‖2 = 〈P , P 〉ω > 0 for all P ∈ Π .
Let Q k = xk + δk−1xk−1 + · · · ∈ Πk , k = 0, 1, 2, . . . . These polynomials Q k are called (monic) orthogonal polynomials w.r.t. 

ω if 〈Q k, Q l〉ω = 0 for k 	= l, and ‖Q k‖ > 0, k = 0, 1, . . . .
Orthogonal polynomials and numerical integration are two closely interrelated topics. In effect, the integral Iω( f ) =∫ d

c f (x)ω(x)dx can be approximated by a finite sum Sn( f ) = ∑n
k=1 λn,k f (xn,k), such that Iω(P ) = Sn(P ), for all P ∈ Π2n−1. 

The approximation formula Iω( f ) ≈ Sn( f ) is the n-point Gauss quadrature rule associated with ω, whose nodes {xn,k}
are the n distinct zeros of the nth orthogonal polynomial Q n . Moreover, for all k ∈ {1, . . . , n}, it holds that λn,k > 0 and 
−1 < xn,k < 1.

One of the most important properties is that {Q k} satisfies a three term recurrence relation

Q k+1(x) = (x − ak)Q k(x) − bk Q k−1(x), (1)

with Q 0 ≡ 1, Q −1 ≡ 0, and bk > 0, k = 1, . . . , n.
The typical procedure to calculate Sn( f ) uses (1) to construct the Jacobi matrix associated with the weight function ω

(see [11])
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