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In this paper, a new nonmonotone adaptive trust region method with line search for 
solving unconstrained nonlinear optimization problems is introduced. The computation 
of the Hessian approximation is based on the usage of the weak secant equation by a 
diagonal definite matrix. Under some reasonable conditions, the global convergence of the 
proposed algorithm is established. The numerical results show the new method is effective 
and attractive for large scale optimization problems.
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1. Introduction

Consider the following large scale unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f (x) : Rn → R is continuously differentiable.
Line search and trust region methods are two prominent classes of iterative methods to solve the unconstrained op-

timization problem (1.1). For a given iteration point xk , the line search method has the form defined by the equation 
xk+1 = xk + αkdk to derive a new point, where dk is a descent direction of f (x) at xk and αk is the stepsize. In the Armijo-
type line search method, αk satisfies

f (xk + αkdk) ≤ fk + γ αk gT
k dk, (1.2)

where γ ∈ (0, 1), fk = f (xk), gk = ∇ f (xk). On the other hand, the trust region methods usually calculate a trial step dk by 
solving the following quadratic subproblem

min qk(d) = fk + gT
k d + 1

2 dT Bkd,

s.t. ‖d‖ ≤ �k, (1.3)
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where Bk ∈ Rn×n is a symmetric matrix which is the Hessian matrix or its approximation of f (x) at the current point xk , 
�k > 0 is called the trust region radius and ‖ · ‖ refers to the Euclidean norm. The ratio rk between the actual reduction in 
the function value fk − fk+1 and the predicted reduction qk(0) − qk(dk) plays a key role to decide whether the trial step is 
acceptable or not and how to adjust the trust region radius. When the trial step is not successful, one rejects it, reduces the 
trust region radius and resolves the subproblem, which can be costly. Nocedal and Yuan [12] proposed a new type of trust 
region algorithms that take the advantage of combining line search to find an iterative point instead of resolving the trust 
region subproblem. Besides, the adjustment strategy, in which the trust region radius is updated only by simply enlarging 
or reducing the initial trust region radius at a constant rate, does not make full use of the information at the current iterate 
point, such as the first-order and second-order derivatives. Hence, many authors have studied the self-adaptive trust region 
method [4,22]. In [14], a new efficient self-adaptive adjustment strategy for updating the trust region radius was proposed. 
That is, given 0 ≤ μ1 < μ2 < 1, 0 < c2 < 1 < c1, set

�k+1 = θk+1‖gk+1‖
∥∥B−1

k+1

∥∥, (1.4)

where

θk+1 =
⎧⎨
⎩

c1θk, if rk > μ2;
c2θk, if rk < μ1;
θk, if μ1 ≤ rk ≤ μ2.

Grippo, Lampariello and Lucidi [9] found that the methods requiring monotonically decreasing of the objective function 
values at each iteration may slow the rate of convergence in the presence of a narrow valley. They proposed a nonmonotone 
line search technique for Newton’s method, in which the stepsize αk satisfies the following inequality

f (xk + αkdk) ≤ fl(k) + γ αk gT
k dk, (1.5)

where fl(k) = max0≤ j≤mk { fk− j}, m0 = 0, 0 ≤ mk ≤ min{mk−1 + 1, M} (k ≥ 1), and M ≥ 0 is an integer. This nonmonotone 
technique was generalized to the trust region method in [6]. However, it has some disadvantages. For example, it follows 
from (1.5) that a good function value generated at any iteration may be thrown away due to the maximum, and the 
numerical results are dependent on the choice of parameter M . In order to overcome these disadvantages, Zhang and Hager 
[20] proposed another nonmonotone line search. They replaced the maximum function value in (1.5) with an average of 
function values, that is, their nonmonotone technique requires decreasing of an average of the successive function values. In 
detail, their method finds the stepsize αk satisfying the following condition

f (xk + αkdk) ≤ Ck + γ αk gT
k dk, (1.6)

where

Ck =
{

fk, k = 0,
ηk−1 Q k−1Ck−1+ fk

Q k
, k ≥ 1,

Q k =
{

1, k = 0,

ηk−1 Q k−1 + 1, k ≥ 1,
(1.7)

and ηk−1 ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1) are two chosen parameters. Numerical results showed that this 
nonmonotone technique was superior to (1.5). Then, this nonmonotone technique was also applied to the trust region 
methods [11,17]. Recently, Gu and Mo [10] found that updating ηk and Q k at each iteration becomes an encumbrance. 
To overcome this limitation, Gu and Mo [10] introduced another nonmonotone strategy. They replaced Ck in (1.6) with Rk
which is a simple convex combination of the previous Rk−1 and fk , i.e.,

Rk =
{

fk, k = 1,

ηk Rk−1 + (1 − ηk) fk, k ≥ 2
(1.8)

for ηk ∈ [ηmin, ηmax]. Numerical experiments in [10] show that this nonmonotone technique is efficient and robust.
In the quasi-Newton algorithm framework, the Hessian approximation matrix Bk+1 is usually required to satisfy the 

secant equation

Bk+1sk = yk, (1.9)

where sk = xk+1 − xk and yk = gk+1 − gk . One of the widely used quasi-Newton method to solve general nonlinear mini-
mization is the BFGS method, which uses the following updating

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+ yk yT
k

sT
k yk

. (1.10)

On the numerical aspect, this method supersedes most of the optimization methods. However, it needs O (n2) storage 
which makes it unsuitable for large scale problems. It is necessary to modify and extend this method to make it suitable 
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