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In this paper, we consider a local volatility model with jumps under which the price of 
a European option can be derived by a partial integro-differential equation (PIDE) with 
nonconstant coefficients. In order to solve numerically the PIDE, we generalize the implicit 
method with three time levels which is constructed to avoid iteration at each time step. 
We show that the implicit method has the stability with respect to the discrete �2-norm 
by using an energy method. We combine the implicit method with an operator splitting 
method to solve a linear complementarity problem (LCP) with nonconstant coefficients that 
describes the price of an American option. Finally we conduct some numerical simulations 
to verify the analysis of the method. The proposed method leads to a tridiagonal linear 
system at each time step and thus the option prices can be computed in a few seconds on 
a computer.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Derivative pricing problems can be formulated by the Black–Scholes equation if an underlying asset follows a geometric 
Brownian motion or its generalized Black–Scholes equation if an underlying asset in addition admits deterministic volatility 
function of underlying asset and time. During the last three decades, there were many evidences that these assumptions for 
the underlying asset cannot account for some features (e.g. volatility smiles in the former or co-movement of smiles and 
skews with the underlying in the latter) which are observed in many financial markets. In this paper, we consider a local 
volatility model with jumps [2] that can explain these phenomena under which option pricing problems can be derived by 
a partial integro-differential equation (PIDE) with non-constant coefficients

∂u

∂τ
(τ , x) −Lu(τ , x) = 0 (1)

for all (τ , x) ∈ (0, T ] × (−∞, ∞), where Lu is the integro-differential operator given by

Lu(τ , x) = σ(τ , x)2
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− (r + λ)u(τ , x) + λ

∞∫
−∞

u(τ , z) f (z − x)dz. (2)

and the volatility σ(τ , x) in (2) is a variable function with respect to the time and spatial variables.
In the case of jump-diffusion models when the volatility in (2) has constant coefficients (i.e. σ(τ , x) := σ for all τ , x), 

d’Halluin, Forsyth, and Vetzal [5] suggested an implicit method of the Crank–Nicolson type for evaluating European options 
in order to solve numerically the PIDE with constant coefficients. This implicit method has the second-order convergence 
rate in time and spatial variables. But, they applied a fixed point iteration to solve the linear system involving the inverse of 
a dense matrix at each time step. Kwon and Lee [8] developed a finite difference method, called the implicit method with 
three time levels, to evaluate the prices of the European options under jump-diffusion models with constant coefficients. To 
overcome the fixed point iteration at each time step, they used a numerical method with three time levels, which is shown 
to be stable in the sense of the Von Neumann analysis and to have the second-order accuracy in time and spatial variables 
when the PIDE has constant coefficients.

The objective of this paper is to generalize the implicit method proposed by Kwon and Lee [8] to the case of the PIDE 
with variable coefficients (1) and to show that the implicit method has the stability in the discrete �2-norm by using the 
energy method. Moreover, we propose the implicit method combined with the operator splitting method in [6,9] to solve 
the LCP with variable coefficients for evaluating American options. The numerical method is designed to avoid the fixed 
point iteration at each time step and we focus on the formulation of a tridiagonal linear system with variable coefficients. 
Thus it can be solved directly by using LU decomposition.

The remainder of this paper is organized as follows. In Section 2 we extend the implicit method with three time levels, 
which has been studied recently by Kwon and Lee [8], to the case of the PIDE with variable coefficients. In Section 3 it 
is proved that the implicit method is stable with respect to the discrete �2-norm. In Section 4 we combine the implicit 
method with an operator splitting method to solve the LCP with variable coefficients which describes the prices of the 
American options under jump-diffusion models. In Section 5 we perform some numerical simulations for pricing European 
and American put options under the Merton and Kou models to verify the analysis of the proposed method. The paper ends 
with conclusions in Section 6.

2. Discretization

In this section we introduce a finite difference method to discretize the PIDE having variable coefficients. Let us consider 
the following PIDE with initial and boundary conditions

∂ ū

∂τ
(τ , x) = Lū(τ , x), (τ , x) ∈ (0, T ] × (−X, X), (3)

ū(τ , x) = ḡ(τ , x), x ∈R \ (−X, X), (4)

ū(0, x) = h̄(x), x ∈ (−X, X), (5)

where Lū is the integro-differential operator defined by

Lū(τ , x) = (σ (τ , x))2

2

∂2ū

∂x2
(τ , x) + α(τ , x)

∂ ū

∂x
(τ , x)

+ β(τ , x)ū(τ , x) + λ

∞∫
−∞

ū(τ , z) f (z − x)dz,

τ = T − t is the remaining time to maturity T , x = ln(S/S0) is the log price of the underlying asset S for a given price S0, X
is a positive constant, λ > 0 is the intensity of the jumps, and f (x) is the density function of jump sizes of the log return x. 
The functions ḡ(τ , x) and h̄(x) are boundary and initial conditions, respectively.

We impose some assumptions, which are described in [1], on the variable coefficients in the initial and boundary valued 
problem (3)–(5) before we proceed to discretize the PIDE.

(A1) All variable coefficients σ , α, and β are continuous and sufficiently regular for the analysis of the proposed method.
(A2) There are σ > 0 and σ̄ > 0 such that for all (τ , x) ∈ (0, T ] × [−X, X]

0 < σ < σ(τ , x) < σ̄ .

(A3) There is Cσ > 0 such that for all (τ , x) ∈ (0, T ] × [−X, X]∣∣∣∣∂σ∂x
(τ , x)

∣∣∣∣ < Cσ .
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