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Two optimized fourth-order compact centered finite difference schemes are presented in 
this paper. By minimizing, over a range of the wave numbers domain, the variations of the 
phase speed with the wave number, an optimization least-squares problem is formulated. 
Hence, solving a linear algebraic system, obtained by incorporating the relations between 
the coefficients for the fourth-order three-parameter family schemes, the corresponding 
well-resolved wave number domains, and the related optimized coefficients, for two 
levels of accuracy, are analytically evaluated. Several dispersion comparisons, including the 
asymptotic behavior between the proposed and other existing optimized pentadiagonal 
fourth-order schemes, are presented and discussed. The schemes applicable directly on 
the interior nodes, are associated with a set of fourth-order boundary closure expressions. 
By adopting a fourth-order six-stage optimized Runge–Kutta algorithm for time marching, 
the stability bounds, the global errors, and the computational efficiency, for the fully 
discrete schemes, are examined. The performances of the presented schemes are tested 
on benchmark problems that involve both the one-dimensional linear convection and the 
one-dimensional nonlinear shallow water equations. Finally, the one-dimensional schemes 
are extended to two dimensions and, using the two dimensional shallow water equations, 
classical applications are presented. The results allow us to propose, as the ideal candidate 
for simulating wave propagation problems, the scheme which corresponds to the strict 
level of accuracy with the maximum resolution over a narrow wave number space.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

For providing accurate solutions for wave propagation phenomenon in several fields, including acoustic, electromagnetic, 
and water waves, high-order compact or implicit finite difference (FD) spatial schemes, coupled with optimized time ad-
vancement Runge–Kutta (RK) algorithm, are widely used. Many of these schemes are analyzed and compared, among others, 
in [7,9,18,27,32,52].

In compact FD schemes, for its implicit nature, the derivatives are unknowns at several mesh points instead of at one 
point such as in the traditional explicit schemes. Therefore, for their computation, a solution of a linear system of equations 
is required. However, these systems can be stored in a banded matrix, normally tridiagonal or pentadiagonal, which can 
be efficiently solved. Again, compact FD schemes for the same stencil width are more accurate than the explicit schemes. 
Otherwise compact schemes use smaller stencil than the corresponding explicit schemes of the same order. Therefore, 
implicitness and compactness are the two essential features that make the general compact schemes more advantageous.
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Historically, these methods have their origin in the first years of the last century (see [14] for references). Later on, 
their interest was renewed with Hirsh [17], and Adam [1] who, following an idea of Kreiss and Oliger [26], developed and 
applied a fourth-order tridiagonal scheme. But, compact schemes have become popular only in the last two decades, thanks 
to the elucidated paper of Lele [30]. For instance, we recall that compact FD methods are also called by different names 
(i.e., Operator Compact Implicit, Padé, Hermitian or Mehrstellen) by different authors, as listed in [16,38].

Starting from Lele’s paper, compact centered, i.e. nondissipative, FD schemes are considered in the present work. From 
these, we confine the attention to the fourth-order three-parameter optimized pentadiagonal formulations. For compact up-
wind schemes, the reader is directed to the papers of Sengupta et al. [42], and of De and Eswaran [8]. Lele examined and 
compared in terms of resolution, i.e. accuracy in Fourier space, a variety ranging from second- to tenth-order compact cen-
tered schemes. So, from the fourth-order pentadiagonal three-parameter family, on the seven-point stencil, fitting at three 
high wave numbers, for which ‘no attempt was made to optimize the choice,’ the modified wave number corresponding 
to the exact wave number, Lele [30] obtains an optimized, so called ‘spectral-like’ resolution, scheme. This scheme, from 
comparisons carried out by Lele, provided a better resolution than the tenth-order scheme having the same support.

In order to improve the spatial resolution characteristics, a few years after Lele’s paper, a variety of fourth-order pen-
tadiagonal optimized schemes have been proposed. Combining the Dispersion–Relation–Preserving (DRP) idea of Tam and 
Webb [44] with compact centered formulations, a class ranging from second- to eighth-order optimized schemes has been 
obtained by Kim and Lee [23]. In order to make the integrand error, defined following the DRP method by the differences 
between the modified and the exact wave numbers, analytically integrable, an appropriate weighting function is introduced 
in [23]. Moreover, in order to emphasize the high wave numbers, a revised form of its weighting function is adopted by the 
authors. A better resolution than Lele’s spectral-like scheme, is presented by optimized second- to sixth-order pentadiagonal 
schemes. The fourth-order pentadiagonal optimized Kim and Lee’s scheme, considered in the following, is denoted here KL4.

Using the spectral method approach (see [10] for details), good wave resolution, especially for the high wave numbers, is 
obtained with the second-order tridiagonal and the fourth-order pentadiagonal schemes proposed by Lee and Seo [29], and 
called by the authors CSS-2, and -4, respectively. On the basis of the measure of the integral errors between the modified 
and the exact wave numbers, over the whole wave numbers spectrum, CSS-4 scheme shows a greater wave resolution 
capability than the KL4 scheme. However, it is well known (e.g. [10] §2.4), that in the spectral methods, the good resolution 
in the high wave number region, is accomplished, by an appreciable overshoot, i.e. the largest deviation from the exact 
differentiation in the optimization range. Then, the so-called Gibb’s phenomenon in the numerical solution, can be produced 
(see [41] §11.16).

Following Lele’s strategy, other choices, however arbitrary of the three wave numbers where the modified wave number 
is forced equal to the exact value, are proposed by Tyler [48]. Unfortunately, the corresponding schemes are not adequately 
discussed in order to understanding the different choices of the wave numbers.

Compared with Lele’s ‘spectral-like’ scheme, high resolution is shown by the optimized fourth-order Kim’s [22] scheme. 
This scheme presents good spectral performance also with respect to KL4 scheme that is obtained using a five times more 
generous tolerance. However, in the integrand error, formulated, as in DRP method, three adjustable parameters are intro-
duced by the author. Therefore, in order to find the set of optimized coefficients, a trial and error procedure is required.

Lastly, in the paper of Liu et al. [34] the sequential quadratic programming method is employed to find the minimum 
of the integrand error, formulated again as in DRP approach. A fourth-order pentadiagonal optimized scheme, referred to 
as high accuracy and maximum resolution (HAMR) by the authors, is obtained. Compared to Kim’s scheme, HAMR scheme 
presents less dispersive behavior in the well-resolved wave numbers domain, that ranges from 0 to about 0.8π , but is more 
dispersive for the high wave numbers, up to the Nyquist limit, where it fails as do as all other centered schemes.

At this point, accordingly to [29], the following question is raised: ‘Is it better for a scheme to have the modified 
wavenumber approximating exact wavenumber over a wide region of wavenumbers within a relatively large error bound 
than it is to have a good approximation in a narrow region with a small error?’ In order to avoid a response to the above 
crucial issue for wave propagation phenomena, the aim of the present work is to propose two FD compact fourth-order pen-
tadiagonal schemes, one with small and the other with less restrictive tolerance errors, to obtain the maximum resolution 
over a narrow, and a wide wave numbers domain, respectively.

Since in the exact solution of the original wave equation, all waves travel with the same constant phase speed, which is 
identical to the group speed, while in the discrete solution the phase speed, different from the group speed, is wave number 
dependent, an optimization procedure is achieved by minimizing the variations of the phase speed with respect to the wave 
number. This approach, for the connection between the group speed with the phase speed, is very attractive, since also the 
group speed is controlled. Thus, incorporating the relations between the coefficients for the fourth-order three-parameter 
family schemes into a least-squares problem, a system of linear algebraic equations is obtained. In order to solve this system 
analytically, an appropriate weighting function in the integrand error is introduced. Hence, the optimization domain, and 
the complete set of the optimized coefficients are determined for two very different levels of accuracy.

So as, to faithfully represent the physics of the wave propagation problems, a clear understanding of the dispersion er-
rors associated with the semi-discretization numerical schemes, is necessary. Therefore, several comparisons, over the entire 
range of wave numbers, i.e. accuracy-in-the-large [51], are presented between the schemes presented in this paper and 
those currently known by the author. In addition, the phase and the group speed, obtained from Fourier analysis, are used 
to investigate the asymptotic behavior, or rate of convergence, as the particle spacing goes to zero, i.e. accuracy-in-the-
small [51].
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