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In this paper, we study the superconvergence properties of the discontinuous Galerkin (DG) 
method applied to one-dimensional mth-order ordinary differential equations without in-
troducing auxiliary variables. We show that the leading term of the discretization error on 
each element is proportional to a combination of Jacobi polynomials. Thus, the p-degree 
DG solution is O (hp+2) superconvergent at the roots of specific combined Jacobi polyno-
mials. Moreover, we use these results to compute simple, efficient and asymptotically exact 
a posteriori error estimates and to construct higher-order DG approximations.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The discontinuous Galerkin method considered here is a class of finite element method using completely discontinuous 
piecewise polynomials for the numerical solution and the test functions. The DG method was highly implemented to provide 
computational solutions of several partial differential equations. In addition to their finite element nature, the DG methods 
are stable, locally conservative and easy to implement, DG methods do not require continuity across element boundaries 
and can handle complex geometry and unstructured meshes with hanging nodes. Moreover, DG methods simplify adaptive 
h–p refinement and produce efficient parallel solution procedures.

In 1973, the DG method was first developed by Reed and Hill [13] to solve first order steady state linear hyperbolic 
conservation laws. Later, Cockburn and Shu [10] extended the method to solve first-order hyperbolic partial differential 
equations of conservation laws. They also developed the Local Discontinuous Galerkin (LDG) method for convection–diffusion 
problems [11]. However, the DG method left asleep for many decades till the last twenty years when it started attracting 
the attention of several researchers and gained much more popularity due to its wide application and flexibility.

Recently, the superconvergence properties of the DG method have been intensively analyzed, these properties can be 
used to construct efficient and asymptotically correct a posteriori estimates of the discretization errors. Adjerid et al. [2]
showed that DG solutions of first-order differential equations are O (hp+2) superconvergent at Radau points and exhibit 
a strong O (h2p+1) superconvergence at the downwind nodes of each element. Celiker and Cockburn [8] showed that the 
p-degree DG solution and its derivative are, respectively, O (hp+2) and O (hp+1) superconvergent at the p-degree right 
Radau and at p-degree left Radau polynomials. Meng et al. [12] provided superconvergence results of the LDG method 
applied to one dimensional linear time dependent fourth order problems, they proved that the error achieves (p + 3

2 )th 
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order of convergence between the LDG solution and a particular projection of the exact solution when using polynomial of 
degree p. Baccouch applied the LDG method to the fourth-order Euler–Bernoulli partial differential equation in one space 
dimension, he [5] developed and analyzed a new superconvergent LDG method and proved the L2 stability of the scheme 
and several optimal L2 error estimates for the solution and its spatial derivatives (up to third order), he [6], also, showed 
that the significant parts of the discretization errors for the LDG solution and its spatial derivatives (up to third order) are 
proportional to (p + 1)-degree Radau polynomials, when polynomials of total degree not exceeding p are used.

Yang and Shu [15] applied the LDG to one-dimensional linear parabolic equation, they proved that the error between the 
LDG solution and the exact solution is (p +2)th order superconvergent at the Radau points with suitable initial discretization 
and they proved that the LDG solution is (p +2)th order superconvergent for the error to a particular projection of the exact 
solution when using piecewise pth degree polynomials. Baccouch analyzed the superconvergence properties of the LDG 
method applied to the second-order wave equation in one space dimension, he [4] showed that the LDG solution is O (hp+2)

superconvergent at the (p + 1)-degree right-Radau polynomial and the solution’s derivative is O (hp+2) superconvergent at 
the (p + 1)-degree left-Radau polynomial; and he [7] proved that the LDG solution and its spatial derivative are O (hp+ 3

2 )

super close to particular projections of the exact solutions for pth-degree polynomial spaces.
Unfortunately, researchers were not fully satisfied with the LDG method due to the introduction of new auxiliary vari-

ables and transformation of the original equation into a system of several first order equations which leads to a more 
complex DG method with expensive computational cost. Unlike the LDG method, Adjerid and Temimi [3] introduced a DG 
method for solving higher-order initial value problem without introducing auxiliary variables. They performed double inte-
gration by parts and chose downwind numerical fluxes for the solution and its derivatives. They showed that the p-degree
DG solution is O (hp+2) superconvergent at the roots of the (p + 1 − m)-degree Jacobi polynomial Pm,0

p+1−m(τ ) and they 
showed that the p-degree DG solution and its first m − 1 derivatives are O (h2p+2−m) superconvergent at the end of each 
step where m is the order of the ordinary differential equation.

Cheng and Shu [9] presented an alternative DG method for solving time dependent partial differential equations with 
higher-order spatial derivatives. Similar to [3], this method does not require the use of auxiliary variables but relies on 
careful design of the numerical fluxes in order to ensure the stability of the method. Moreover, they proved (p + 1)th order 
of accuracy when using piecewise pth degree polynomials, under the condition that p + 1 is greater than or equal to the 
order of the equation. These DG schemes are more compact and simpler in formulation the classical LDG method. Stimulated 
by the work of Cheng and Shu [9] and in order to develop more properties of the DG method, a local error analysis was 
conducted in this manuscript, we show that the leading term of the discretization error on each element is proportional 
to a combination of Jacobi polynomials. Thus, the p-degree DG solution is O (hp+2) superconvergent at the roots of specific 
combined Jacobi polynomials. These results are used to compute simple, efficient and asymptotically exact a posteriori error 
estimates and to construct higher-order DG approximations.

The paper is organized as follows: In Section 2, we present the DG formulation for second-order ordinary differential 
equations. In Section 3, we provide a local error analysis of the DG method. We extend the error analysis of the DG method 
to mth-order ordinary differential equations in Section 4 and to nonlinear ordinary differential equations in Section 5. In 
Section 6, we construct efficient and asymptotically exact a posteriori error estimates. In Section 7, we present several 
numerical results to show the full agreement with the theory. In Section 8, we conclude with a few remarks.

2. A model problem

Let us consider the following second-order ordinary boundary value problem

c2u′′ + c1u′ + c0u = f (x), a < x < b, (2.1a)

subject to the mixed boundary conditions

u(a) = ul, u′(b) = urx, (2.1b)

we will also explore numerically (2.1a) subject to the Dirichlet boundary conditions

u(a) = ul, u(b) = ur . (2.2)

Assume that f is selected such that the exact solution is a smooth function.
In order to obtain the weak DG formulation, we partition the interval [a, b] into N + 1 subintervals Ik = (xk, xk+1), 

k = 0, · · · , N , where x0 = a, xk = a + k �x, k = 1, 2, · · · , N and xN+1 = b, we denote by �x = (b−a)
N+1 the length of each 

subinterval.
We define a finite element space consisting of piecewise pth-degree polynomial functions

S N,p = {U : U |Ik ∈ Pp}, (2.3)

where Pp denotes the space of polynomials of degree p. We define the weak DG formulation for (2.1) by multiplying (2.1a)
by a test function, and then integrating over Ik . A double integration by parts leads to
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