# Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization 

Avram Sidi<br>Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

## A R T I C L E I N F O

## Article history:

Received 21 February 2013
Received in revised form 13 February 2014
Accepted 18 February 2014
Available online 19 March 2014

## Keywords:

Cauchy Principal Value
Hadamard Finite Part
Circular Hilbert transform
Hypersingular integral
Numerical quadrature
Trapezoidal rule
Euler-Maclaurin expansion
Regularization

## A B S T R A C T

Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the singular integrals $I^{(1)}[u]=\int_{a}^{b}\left(\cot \frac{\pi(x-t)}{T}\right) u(x) d x$ and $I^{(2)}[u]=\int_{a}^{b}\left(\csc ^{2} \frac{\pi(x-t)}{T}\right) u(x) d x$, with $b-a=T$ and $u(x)$ a $T$-periodic continuous function on $\mathbb{R}$. These integrals are not defined in the regular sense, but are defined in the sense of Cauchy Principal Value and Hadamard Finite Part, respectively. With $h=(b-a) / n, n=1,2, \ldots$, the numerical quadrature formulas $Q_{n}^{(1)}[u]$ for $I^{(1)}[u]$ and $Q_{n}^{(2)}[u]$ for $I^{(2)}[u]$ are

$$
Q_{n}^{(1)}[u]=h \sum_{j=1}^{n} f(t+j h-h / 2), \quad f(x)=\left(\cot \frac{\pi(x-t)}{T}\right) u(x)
$$

and

$$
Q_{n}^{(2)}[u]=h \sum_{j=1}^{n} f(t+j h-h / 2)-T^{2} u(t) h^{-1}, \quad f(x)=\left(\csc ^{2} \frac{\pi(x-t)}{T}\right) u(x)
$$

We provided a complete analysis of the errors in these formulas under the assumption that $u \in C^{\infty}(\mathbb{R})$ and is $T$-periodic. We actually showed that,

$$
\begin{array}{ll}
I^{(1)}[u]-Q_{n}^{(1)}[u]=O\left(n^{-\mu}\right) & \text { and } \\
I^{(2)}[u]-Q_{n}^{(2)}[u]=O\left(n^{-\mu}\right) & \text { as } n \rightarrow \infty, \forall \mu>0
\end{array}
$$

In this note, we analyze the errors in these formulas under the weaker assumption that $u \in C^{s}(\mathbb{R})$ for some finite integer $s$. By first regularizing these integrals, we prove that, if $u^{(s+1)}$ is piecewise continuous, then

$$
\begin{array}{ll}
I^{(1)}[u]-Q_{n}^{(1)}[u]=o\left(n^{-s-1 / 2}\right) & \text { as } n \rightarrow \infty, \text { if } s \geqslant 1, \quad \text { and } \\
I^{(2)}[u]-Q_{n}^{(2)}[u]=o\left(n^{-s+1 / 2}\right) & \text { as } n \rightarrow \infty, \text { if } s \geqslant 2 .
\end{array}
$$

We also extend these results by imposing different smoothness conditions on $u^{(s+1)}$. Finally, we append suitable numerical examples.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.apnum.2014.02.011
0168-9274/© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

## 1. Introduction and background

Let $u(x)$ be a $T$-periodic function that is sufficiently smooth on $\mathbb{R}$ and consider the singular integrals

$$
\begin{equation*}
I^{(1)}[u]=\int_{a}^{b}\left(\cot \frac{\pi(x-t)}{T}\right) u(x) d x, \quad a<t<b ; b-a=T \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I^{(2)}[u]=\int_{a}^{b}\left(\csc ^{2} \frac{\pi(x-t)}{T}\right) u(x) d x, \quad a<t<b ; b-a=T . \tag{1.2}
\end{equation*}
$$

Of these, $I^{(1)}[u]$ is known also as the circular Hilbert transform and is defined in the sense of Cauchy Principal Value (CPV), while $I^{(2)}[u]$ is a so-called hypersingular integral and is defined in the sense of Hadamard Finite Part (HFP). Note that the integrands in both integrals are $T$-periodic with nonintegrable singularities at $x=t$ in the interval of integration $(a, b)$; namely, the integrand of $I^{(1)}[u]$ has a singularity of the form $(x-t)^{-1}$, while $I^{(2)}[u]$ has a singularity of the form $(x-t)^{-2}$. For the properties of CPV and HFP integrals, see Davis and Rabinowitz [3], Evans [4], or Kythe and Schäferkotter [5], for example. ${ }^{1}$

In the recent papers Sidi and Israeli [14] and Sidi [12], we derived trapezoidal rule type approximations to the integrals $I^{(1)}[u]$ and $I^{(2)}[u]$, respectively. ${ }^{2}$ With $h=T / n, n=1,2, \ldots$, these approximations are

$$
\begin{equation*}
Q_{n}^{(1)}[u]=h \sum_{j=1}^{n} f(t+j h-h / 2), \quad f(x)=\left(\cot \frac{\pi(x-t)}{T}\right) u(x), \quad \text { for } I^{(1)}[u], \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{(2)}[u]=h \sum_{j=1}^{n} f(t+j h-h / 2)-T^{2} u(t) h^{-1}, \quad f(x)=\left(\csc ^{2} \frac{\pi(x-t)}{T}\right) u(x), \quad \text { for } I^{(2)}[u] . \tag{1.4}
\end{equation*}
$$

We also derived the following results concerning the errors in these approximations under the assumption that $u \in C^{\infty}(\mathbb{R})$ :

$$
\begin{equation*}
Q_{n}^{(1)}[u]-I^{(1)}[u]=O\left(n^{-\mu}\right) \quad \text { as } n \rightarrow \infty, \forall \mu>0, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{(2)}[u]-I^{(2)}[u]=O\left(n^{-\mu}\right) \quad \text { as } n \rightarrow \infty, \forall \mu>0 \tag{1.6}
\end{equation*}
$$

As is done in [12], both of these results can be derived by using one of the author's generalizations of the classical EulerMaclaurin expansion given in Sidi [10, Theorem 2.3]. ${ }^{3}$

In this work, we analyze the errors in the formulas $Q_{n}^{(1)}[u]$ and $Q_{n}^{(2)}[u]$ under the weaker assumption that $u(x)$ is

[^1]$$
I[g]=\int_{a}^{b} g(x)(\log |x-t|)^{p}|x-t|^{\beta}, \quad \beta \text { real, } p=0,1, a<t<b,
$$
and
$$
I[g]=\int_{a}^{b} g(x)(x-t)^{\beta}, \quad \beta=-1,-2, \ldots, a<t<b,
$$
$g(x)$ being allowed to have arbitrary algebraic endpoint singularities. Of course, $I^{(1)}[u]$ and $I^{(2)}[u]$ are special cases of these.
${ }_{3}$ The classical Euler-Maclaurin (E-M) expansion pertains to integrals $\int_{a}^{b} g(x) d x$ whose integrands are regular throughout the (closed) interval [a, $b$ ], whereas the generalized E-M expansions of [10] treat the case in which $g(x)$ has arbitrary algebraic endpoint singularities. For the case in which $g(x)$ has arbitrary algebraic-logarithmic endpoint singularities, see Sidi [9] and [11]. In all three papers [9], [10], and [11], the integrals $\int_{a}^{b} g(x) d x$ can be convergent or divergent; in case of divergence, they are defined in the sense of HFP.

It was observed in [12] that the CPV integrals are also sums of HFP integrals, and this fact was used in the derivation of their associated asymptotic expansions.

# https://daneshyari.com/en/article/4645108 

Download Persian Version:
https://daneshyari.com/article/4645108

## Daneshyari.com


[^0]:    E-mail address: asidi@cs.technion.ac.il.
    URL: http://www.cs.technion.ac.il/~asidi.

[^1]:    ${ }^{1}$ The usual notation for integrals defined in the sense of the Cauchy Principal Value (CPV) is $f_{a}^{b} f(x) d x$, while for those defined in the sense of Hadamard Finite Part (HFP) it is $f_{a}^{b} f(x) d x$. For simplicity, in this work, we use $\int_{a}^{b} f(x) d x$ to denote both, as in (1.1) and (1.2).
    2 Actually, in [12], we treated singular integrals of the very general forms

