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Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for
the singular integrals I(1)[u] = ´ b

a (cot π(x−t)
T )u(x)dx and I(2)[u] = ´ b

a (csc2 π(x−t)
T )u(x)dx,

with b − a = T and u(x) a T -periodic continuous function on R. These integrals are not
defined in the regular sense, but are defined in the sense of Cauchy Principal Value
and Hadamard Finite Part, respectively. With h = (b − a)/n, n = 1,2, . . . , the numerical
quadrature formulas Q (1)

n [u] for I(1)[u] and Q (2)
n [u] for I(2)[u] are

Q (1)
n [u] = h

n∑
j=1

f (t + jh − h/2), f (x) =
(

cot
π(x − t)

T

)
u(x),

and

Q (2)
n [u] = h

n∑
j=1

f (t + jh − h/2) − T 2u(t)h−1, f (x) =
(

csc2 π(x − t)

T

)
u(x).

We provided a complete analysis of the errors in these formulas under the assumption that
u ∈ C∞(R) and is T -periodic. We actually showed that,

I(1)[u] − Q (1)
n [u] = O

(
n−μ

)
and

I(2)[u] − Q (2)
n [u] = O

(
n−μ

)
as n → ∞, ∀μ > 0.

In this note, we analyze the errors in these formulas under the weaker assumption that
u ∈ C s(R) for some finite integer s. By first regularizing these integrals, we prove that, if
u(s+1) is piecewise continuous, then

I(1)[u] − Q (1)
n [u] = o

(
n−s−1/2) as n → ∞, if s � 1, and

I(2)[u] − Q (2)
n [u] = o

(
n−s+1/2) as n → ∞, if s � 2.

We also extend these results by imposing different smoothness conditions on u(s+1) .
Finally, we append suitable numerical examples.
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1. Introduction and background

Let u(x) be a T -periodic function that is sufficiently smooth on R and consider the singular integrals

I(1)[u] =
bˆ

a

(
cot

π(x − t)

T

)
u(x)dx, a < t < b; b − a = T , (1.1)

and

I(2)[u] =
bˆ

a

(
csc2 π(x − t)

T

)
u(x)dx, a < t < b; b − a = T . (1.2)

Of these, I(1)[u] is known also as the circular Hilbert transform and is defined in the sense of Cauchy Principal Value (CPV),
while I(2)[u] is a so-called hypersingular integral and is defined in the sense of Hadamard Finite Part (HFP). Note that the
integrands in both integrals are T -periodic with nonintegrable singularities at x = t in the interval of integration (a,b);
namely, the integrand of I(1)[u] has a singularity of the form (x − t)−1, while I(2)[u] has a singularity of the form (x − t)−2.
For the properties of CPV and HFP integrals, see Davis and Rabinowitz [3], Evans [4], or Kythe and Schäferkotter [5], for
example.1

In the recent papers Sidi and Israeli [14] and Sidi [12], we derived trapezoidal rule type approximations to the integrals
I(1)[u] and I(2)[u], respectively.2 With h = T /n, n = 1,2, . . . , these approximations are

Q (1)
n [u] = h

n∑
j=1

f (t + jh − h/2), f (x) =
(

cot
π(x − t)

T

)
u(x), for I(1)[u], (1.3)

and

Q (2)
n [u] = h

n∑
j=1

f (t + jh − h/2) − T 2u(t)h−1, f (x) =
(

csc2 π(x − t)

T

)
u(x), for I(2)[u]. (1.4)

We also derived the following results concerning the errors in these approximations under the assumption that u ∈ C∞(R):

Q (1)
n [u] − I(1)[u] = O

(
n−μ

)
as n → ∞, ∀μ > 0, (1.5)

and

Q (2)
n [u] − I(2)[u] = O

(
n−μ

)
as n → ∞, ∀μ > 0. (1.6)

As is done in [12], both of these results can be derived by using one of the author’s generalizations of the classical Euler–
Maclaurin expansion given in Sidi [10, Theorem 2.3].3

In this work, we analyze the errors in the formulas Q (1)
n [u] and Q (2)

n [u] under the weaker assumption that u(x) is

1 The usual notation for integrals defined in the sense of the Cauchy Principal Value (CPV) is −́b
a f (x)dx, while for those defined in the sense of Hadamard

Finite Part (HFP) it is =́b
a f (x)dx. For simplicity, in this work, we use

´ b
a f (x)dx to denote both, as in (1.1) and (1.2).

2 Actually, in [12], we treated singular integrals of the very general forms

I[g] =
bˆ

a

g(x)
(
log |x − t|)p |x − t|β , β real, p = 0,1, a < t < b,

and

I[g] =
bˆ

a

g(x)(x − t)β , β = −1,−2, . . . , a < t < b,

g(x) being allowed to have arbitrary algebraic endpoint singularities. Of course, I(1)[u] and I(2)[u] are special cases of these.
3 The classical Euler–Maclaurin (E–M) expansion pertains to integrals

´ b
a g(x)dx whose integrands are regular throughout the (closed) interval [a,b],

whereas the generalized E–M expansions of [10] treat the case in which g(x) has arbitrary algebraic endpoint singularities. For the case in which g(x) has
arbitrary algebraic-logarithmic endpoint singularities, see Sidi [9] and [11]. In all three papers [9], [10], and [11], the integrals

´ b
a g(x)dx can be convergent

or divergent; in case of divergence, they are defined in the sense of HFP.
It was observed in [12] that the CPV integrals are also sums of HFP integrals, and this fact was used in the derivation of their associated asymptotic

expansions.
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